Exercise 9.1

Determine order and degree (if defined) of differential equations given in Exercise 1 to 10:

1. $\frac{d^{4} y}{d x^{4}}+\sin \left(y^{\prime \prime \prime}\right)=0$

Sol. The given D.E. is $\frac{a^{4} y}{a z^{4}}+\sin y^{\prime \prime \prime}=0$
The highest order derivative present in the differential equation is $\frac{a^{4} y}{a z^{4}}$ and its order is 4 .

The given differential equation is not a polynomial equation in derivatives (\because The term $\sin y^{\prime \prime \prime}$ is a T-function of derivative $y^{\prime \prime \prime}$). Therefore degree of this D.E. is not defined.
Ans. Order 4 and degree not defined.
2. $y^{\prime}+5 y=0$

Sol. The given D.E. is $y^{\prime}+5 y=0$.
The highest order derivative present in the D.E. is $y^{\prime}(=$ ay $)$ and so its order is one. The given D.E. is a polynomial equation in derivatives (y^{\prime} here) and the highest power raised to highest order derivative y^{\prime} is one, so its degree is one.
Ans. Order 1 and degree 1.
3. $\left|\frac{\mathrm{ds})^{4}}{\mathrm{~d} 5}\right|^{4}+3 s \frac{\mathrm{~d}^{2} \mathrm{~s}}{\mathrm{~d} 5^{2}}=\mathbf{o}$

Sol. The given D.E. is $\left.\right|_{(\text {at })} ^{(a z)^{4}}+3 s \quad \underline{a^{2} z}{a t^{2}}^{a^{2}}=0$.
The highest order derivative present in the D.E. is $\frac{a^{2} z}{a t^{2}}$ and its order is 2. The given D.E is a polynomial equation in derivatiyes $a^{2} z$ and the highest power raised to highest order derivative $\frac{\mathrm{at}^{2}}{}$ is one. Therefore degree of D.E. is 1.
Ans. Order 2 and degree 1.
4. $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \frac{d y}{d x}=\mathbf{o}$

$$
\left(a^{2} y\right)^{2} \quad(a y)
$$

Sol. The given D.E. is $\left|\left(\left.a z^{2}\right|^{\prime}\right)+\cos \right|\left(a z l^{\prime}\right)=0$.
The highest order derivative present in the differential equation is $\frac{a^{2} y}{a z^{2}}$ and its order is 2 .

The given D.E. is not a polynomial equation in derivatives $\left(\because\right.$ The term $\cos \frac{a y}{a z}$ is a T-function of derivative $\frac{a y}{a z}$).
Therefore degree of this D.E. is not defined.
Ans. Order 2 and degree not defined.

$$
\frac{d^{2} y}{d x^{2}}=\cos 3 x+\sin 3 x
$$

Sol. The given D.E. is $\frac{a^{2} y}{a^{2}}=\cos 3 x+\sin 3 x$.

$$
a^{2} y
$$

The highest order derivative present in the D.E. is $\overline{a^{2}}$ and its order is 2 .

The given D.E. is a polynomial equation in derivatives and the highest power raised to highest order $\frac{a y}{a z^{2}}=\left|\frac{a y}{a z^{2}}\right|$, is one, so its degree is 1.
Ans. Order 2 and degree 1.
Remark. It may be remarked that the terms $\cos 3 x$ and $\sin 3 x$ present in the given D.E. are trigonometrical functions (but not T-functions of derivatives). It may be noted that ($a z$ リ)
derivatives.
6. $\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=\mathbf{0}$

Sol. The given D.E. is $\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=0$
The highest order derivative present in the D.E. is $y^{\prime \prime \prime}$ and its order is 3.

The given D.E. is a polynomial equation in derivatives $y^{\prime \prime \prime}, y^{\prime \prime}$ and y^{\prime} and the highest power raised to highest order derivative $y^{\prime \prime \prime}$ is two, so its degree is 2.
Ans. Order 3 and degree 2.
7. $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=\mathbf{o}$

Sol. The given D.E. is $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$
The highest order derivative present in the D.E. is $y^{\prime \prime \prime}$ and its order is 3 .
The given D.E. is a polynomial equation in derivatives $y^{\prime \prime \prime}, y^{\prime \prime}$ and y^{\prime} and the highest power raised to highest order derivative $y^{\prime \prime \prime}$ is one, so its degree is 1 .
Ans. Order 3 and degree 1 .
8. $y^{\prime}+y=e^{x}$

Sol. The given D.E. is $y^{\prime}+y=e^{x}$
The highest order derivative present in the D.E. is y^{\prime} and its order is 1 .
The given D.E. is a polynomial equation in derivative y^{\prime}. (It may be noted that e^{x} is an exponential function and not a polynomial function but is not an exponential function of derivatives) and the highest power raised to highest order derivative y^{\prime} is one, so its degree is 1 .
Ans. Order 1 and degree 1.
9. $y^{\prime \prime}+\left(y^{\prime}\right)^{2}+2 y=0$

Sol. The given D.E. is $y^{\prime \prime}+\left(y^{\prime}\right)^{2}+2 y=0$
The highest order derivative present in the D.E. is $y^{\prime \prime}$ and its order is 2 .
The given D.E. is a polynomial equation in derivatives $y^{\prime \prime}$ and y^{\prime} and the highest power raised to highest order derivative $y^{\prime \prime}$ is one, so its degree is 1.
Ans. Order 2 and degree 1.
10. $y^{\prime \prime}+2 y^{\prime}+\sin y=0$

Sol. The given D.E. is $y^{\prime \prime}+2 y^{\prime}+\sin y=0$
The highest order derivative present in the D.E. is $y^{\prime \prime}$ and its order is 2 .
The given D.E. is a polynomial equation in derivatives $y^{\prime \prime}$ and y^{\prime}. (It may be noted that sin y is not a polynomial function of y, it is a T-function of y but is not a T-function of derivatives) and the highest power raised to highest order derivative $y^{\prime \prime}$ is one, so its degree is one.
Ans. Order 2 and degree 1.

11. The degree of the differential equation

$$
\left(\left.\frac{d^{2} y}{d x^{2}}\right|^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+\mathbf{1}=\mathbf{o}\right. \text { is }
$$

(A) 3
(B) 2
(C) 1
(D) Not defined.

Sol. The given D.E. is

$$
\begin{equation*}
\left(\left.\frac{a^{2} y}{\left(a z^{2}\right.}\right|^{3}+\left|\left(\frac{a y}{a z}\right)^{2}+\sin \varphi_{(\overline{a z})}\right|+1=0\right. \tag{i}
\end{equation*}
$$

This D.E. (i) is not a polynomial equation in derivatives.

$$
\left[\left.\because \sin \binom{\text { ay }}{a z} \right\rvert\, \text { is a T-function of derivative ay } \underset{-a z}{ }\right]
$$

\therefore Degree of D.E. (i) is not defined.
Answer. Option (D) is the correct answer.
12. The order of the differential equation

$$
2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+y=0 \text { is }
$$

(A) 2
(B) 1
(C) 0
(D) Not defined

Sol. The given D.E. is $2 x^{2} \underline{a^{2} y}-3 \underline{a y}+y=0$

$$
a z^{2} \quad a z
$$

The highest order derivative present in the differential equation is $\frac{a^{2} y}{a z^{2}}$ and its order is 2 .
Answer. Order of the given D.E. is 2.

Exercise 9.2

In each of the Exercises 1 to 6 verify that the given functions (explicit) is a solution of the corresponding differential equation:

1. $y=e^{x}+1: y^{\prime \prime}-y^{\prime}=0$

Sol. Given: $y=e^{x}+1$
To prove: y given, by (i) is a solution of the D.E. $y^{\prime \prime}-y^{\prime}=0$
From (i), $y^{\prime}=e^{x}+0=e^{x}$ and $y^{\prime \prime}=e^{x}$
\therefore L.H.S. of D.E. (ii) $=y^{\prime \prime}-y^{\prime}=e^{x}-e^{x}=0=$ R.H.S. of D.E. (ii)
$\therefore \quad y$ given by (i) is a solution of D.E. (ii).
2. $y=x^{2}+2 x+C: y^{\prime}-2 x-2=0$

Sol. Given: $y=x^{2}+2 x+C$
To prove: y given by (i) is a solution of the D.E.
$y^{\prime}-2 x-2=0$
From (i), $y^{\prime}=2 x+2$
\therefore L.H.S. of D.E. (ii) $=y^{\prime}-2 x-2$
$=(2 x+2)-2 x-2=2 x+2-2 x-2=0=$ R.H.S. of D.E. (ii)
$\therefore y$ given by (i) is a solution of D.E. (ii).
3. $y=\cos x+C: y^{\prime}+\sin x=0$

Sol. Given: $y=\cos x+C$
To prove: y given by (i) is a solution of D.E. $y^{\prime}+\sin x=0 \ldots$ (ii)
From (i), $y^{\prime}=-\sin x$
\therefore L.H.S. of D.E. (ii) $=y^{\prime}+\sin x=-\sin x+\sin x$

$$
=0=\text { R.H.S. of D.E. (ii) }
$$

$\therefore \quad y$ given by (i) is a solution of D.E. (ii).
4. $y=\sqrt{1+x^{2}}: y^{\prime}=\frac{x y}{1+x^{2}}$

Sol. Given: $y=\sqrt{1+z^{2}}$
To prove: y given by (i) is a solution of D.E. $y^{\prime}=\frac{z y}{1+z^{2}}$

From (i), $y^{\prime}=\frac{\mathrm{a}}{\mathrm{az}} \sqrt{1+\mathrm{z}^{2}}=\underline{\mathrm{a}}\left(1+x^{2}\right)^{1 / 2}$
$=\frac{1}{2}\left(1+x^{2}\right)^{-1 / 2} \frac{\mathrm{a}}{\mathrm{az}}\left(1+x^{2}\right)=\frac{1}{2}\left(1+x^{2}\right)^{-1 / 2} \cdot 2 x=\frac{\mathrm{z}}{\sqrt{1+\mathrm{z}^{2}}} \ldots$ (iii)

$$
\begin{aligned}
& \left.=\frac{\mathrm{z}}{\sqrt{1+\mathrm{z}^{2}}} \quad\left[\because \frac{\sqrt{\mathrm{t}}}{\mathrm{t}}=\frac{\sqrt{\mathrm{t}}}{\sqrt{\mathrm{t} \sqrt{\mathrm{t}}}}=\frac{1}{\sqrt{\mathrm{t}}}\right]\right] \\
& =y^{\prime}[\text { By (iii) }]=\text { L.H.S. of D.E. }(i i)
\end{aligned}
$$

$\therefore y$ given by (i) is a solution of D.E. (ii).
5. $y=A x: x y^{\prime}=y(x \neq 0)$

Sol. Given: $y=\mathrm{A} x$
To prove: y given by (i) is a solution of the D.E. $x y^{\prime}=y(x \neq 0)$
From (i), $y^{\prime}=\mathrm{A}(1)=\mathrm{A}$
L.H.S. of D.E. $(i i)=x y^{\prime}=x \mathrm{~A}$

$$
=\mathrm{A} x=y[\mathrm{By}(i)]=\text { R.H.S. of D.E. }(i i)
$$

$\therefore y$ given by (i) is a solution of D.E. (ii).
6. $y=x \sin x: x y^{\prime}=y+x \sqrt{x^{2}-y^{2}} \quad(x \neq 0$ and $x>y$ or $x<-y)$

Sol. Given: $y=x \sin x$
To prove: y given by (i) is a solution of D.E.

$$
\begin{array}{ccc}
x y^{\prime}=y+x & \sqrt{\mathrm{z}^{2}-\mathrm{y}^{2}} & \ldots(\text { ii })
\end{array}(x \neq 0 \text { and } x>y \text { or } x<-y)
$$

From (i), $\overline{\mathrm{az}}\left(=y^{\prime}\right)=x \overline{\mathrm{az}}(\sin x)+\sin x \overline{\mathrm{az}} x=x \cos x+\sin x$
L.H.S. of D.E. $(i i)=x y^{\prime}=x(x \cos x+\sin x)$

$$
\begin{equation*}
=x^{2} \cos x+x \sin x \tag{iii}
\end{equation*}
$$

R.H.S. of D.E. (ii) $=y$
Putting $y=x \sin x$ fro Academy
$=x \sin x+x \sqrt{z^{2}-z^{2} \sin ^{2} z}=x \sin x+x \sqrt{z^{2}\left(1-\sin ^{2} z\right)}$
$=x \sin x+x \sqrt{z^{2} \cos ^{2} z}=x \sin x+x \cdot x \cos x$
$=x \sin x+x^{2} \cos x=x^{2} \cos x+x \sin x$
From (iii) and (iv), L.H.S. of D.E. (ii) = R.H.S. of D.E. (ii)
$\therefore y$ given by (i) is a solution of D.E. (ii).

In each of the Exercises 7 to 10 , verify that the given functions (Explicit or Implicit) is a solution of the corresponding differential equation:
7. $x y=\log y+C: y^{\prime}=\frac{y^{2}}{1-x y}(x y \neq 1)$

Sol. Given: $x y=\log y+C$
To prove that Implicit function given by (i) is a solution of the D.E. $\quad y^{\prime}=\frac{y^{2}}{1-z y}$

Differentiating both sides of (i) w.r.t. x, we have

$$
\begin{aligned}
& x y^{\prime}+y(1)=\frac{1}{y} y^{\prime}+0 \\
\Rightarrow & x y^{\prime}-\frac{y^{\prime}}{\mathrm{y}}=-y \quad \Rightarrow y^{\prime}\left(\mathrm{z}-\frac{1}{\mathrm{y}}\right)=-y \\
\Rightarrow & y^{\prime}\left(\frac{\mathrm{zy}-1}{\mathrm{y}}\right)=-y \quad \Rightarrow \quad y^{\prime}(x y-1)=-y^{2} \\
\Rightarrow \quad & y^{\prime}=\frac{-\mathrm{y}^{2}}{\mathrm{zy}-1}=\frac{-\mathrm{y}^{2}}{-(1-\mathrm{zy})} \quad \frac{\mathrm{y}^{2}}{1-\mathrm{zy}}
\end{aligned}
$$

which is same as differential equation (ii), i.e., Eqn. (ii) is proved.
\therefore Function (Implicit) given by (i) is a solution of D.E. (ii).
8. $y-\cos y=x:(y \sin y+\cos y+x) y^{\prime}=y$

Sol. Given: $y-\cos y=x$
To prove that function given by (i) is a solution of D.E.

$$
(y \sin y+\cos y+x) y^{\prime}=y
$$

Differentiating both sides of (i) w.r.t. x, we have

$$
\begin{align*}
& y^{\prime}+(\sin y) y^{\prime}
\end{align*}=1 \quad \Rightarrow y^{\prime}(1+\sin y)=1
$$

Putting the value of x from (i) and value of y^{\prime} from (iii) in L.H.S. of (ii), we have
L.H.S. $=(y \sin y+\cos y+x) y^{\prime}$
$=(y \sin y+\cos y+y-\cos y) \frac{1}{1+\sin y}=(y \sin y+y) \frac{1}{1+\sin y}$
$=y(\sin y+1) \frac{1}{(1+\sin y)}=y=$ R.H.S. of $(i i)$.

9. $x+y=\tan ^{-1} y: y^{2} y^{\prime}+y^{2}+1=0$

Sol. Given: $x+y=\tan ^{-1} y$
To prove that function given by (i) is a solution of D.E. $y^{2} y^{\prime}+y^{2}+1=0$
Differentiating both sides of (i), w.r.t. $x, 1+y^{\prime}=\frac{1}{+y^{2} y^{\prime}} 1$

Cross-multiplying

$$
\left(1+y^{\prime}\right)\left(1+y^{2}\right)=y^{\prime} \quad \Rightarrow 1+y^{2}+y^{\prime}+y^{\prime} y^{2}=y^{\prime}
$$

$\Rightarrow y^{2} y^{\prime}+y^{2}+1=0$ which is same as D.E. (ii).
\therefore Function given by (i) is a solution of D.E. (ii).
10. $y=\sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}, x \in(-a, a): x+y \frac{\mathrm{dy}}{\mathrm{dx}}=0(y \neq 0)$

Sol. Given: $y=\sqrt{\mathrm{a}^{2}-\mathrm{z}^{2}}, x \in(-a, a)$
To prove that function given by (i) is a solution of D.E.

$$
\begin{equation*}
x+y \frac{a y}{a z}=0 \tag{ii}
\end{equation*}
$$

From (i),

$$
\begin{align*}
\frac{a y}{a z} & =\frac{1}{\left(a^{2}-x^{2}\right)^{-1 / 2} \frac{a}{}\left(a^{2}-x^{2}\right)} \\
& 2 \quad a z \tag{iii}\\
& =\frac{1}{2 \sqrt{a^{2}-z^{2}}}(-2 x)=\frac{-z}{\sqrt{a^{2}-z^{2}}}
\end{align*}
$$

Putting these values of y and $a z$ from (i) and (iii) in L.H.S. of (ii),
L.H.S. $=x+y \quad=x+\sqrt{a^{2}-z^{2}}$
$\quad=x-x=0=$ R.H.S. of D.E. (ii).
\therefore Function given by (i) is a solution of D.E. (ii).
11. Choose the correct answer:

The number of arbitrary constants in the general solution of a differential equation of fourth order are:
(A) 0
(B) 2
(C) 3
(D) 4 .

Sol. Option (D) 4 is the correct answer.
Result. The number of arbitrary constants (c_{1}, c_{2}, c_{3} etc.) in the general solution of a differential equation of nth order is n.
12. The number of arbitrary constants in the particular solution of a differential equation of third order are
(A) 3
(B) 2
(C) 1
(D) 0 .

Sol. The number of arbitrary constants in a particular solution of a differential equation of any order is zero (0).
$[\because$ By definition, a particular solution is a solution which contains no arbitrary constant.]
\therefore Option (D) is the correct answer.

Exercise 9.3

In each of the Exercises 1 to 5 , form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

1. $\frac{x}{a}+\frac{y}{b}=1$

Sol. Equation of the given family of curves is $\frac{z}{a}+\frac{y}{b}=1$
Here there are two arbitrary constants a and b. So we shall differentiate both sides of (i) two times w.r.t. x.
From (i), $\frac{1}{a} \cdot 1+\underline{1}$ ay $=0$ or $\underline{1} \quad \underline{1} \frac{a y}{a z}$

$$
\begin{equation*}
b \text { az } \quad a^{=-} b \tag{ii}
\end{equation*}
$$

Again diff. (ii) w.r.t. $x, o=-\frac{1}{b} \frac{a^{2} y}{a z^{2}}$
Multiplying both sides by $-b, \frac{a^{2} y}{a z^{2}}=0$.
Which is the required D.E.
Remark. We need not eliminate a and b because they have already got eliminated in the process of differentiation.
2. $y^{2}=a\left(b^{2}-x^{2}\right)$

Sol. Equation of the given family of curves is

$$
\begin{equation*}
y^{2}=a\left(b^{2}-x^{2}\right) \tag{i}
\end{equation*}
$$

Here there are two arbitrary constants a and b. So, we are to differentiate (i) twice w.r.t. x.
From (i), $2 y \frac{\mathrm{ay}}{\mathrm{az}}=a(0-2 x)=-2 a x$.
Dividing by 2, $y \frac{a y}{a z}=-a x$
Again differentiating both sides of (ii) w.r.t. x,
$y \frac{a^{2} y}{a z z^{2}}+\frac{a y}{a z} \cdot \frac{a y}{a z}=-a \quad$ or $\left.\quad y \frac{a^{2} y}{a z^{2}}+\left(\frac{a y}{(a z}\right)^{2}\right)=-a$
Putting this value of $-a$ from (iii) in (ii), (To eliminate a, as b is already absent in both (ii) and (iii)), we have

or $x y{\underset{a z^{2}}{ }}_{\frac{a^{2}}{a}}^{a z}\left(\frac{a y}{a z}\right)^{2}-y \frac{a y}{a z}=0$.
3. $y=a e^{3 x}+b e^{-2 x}$

Sol. Equation of the family of curves is

$$
\begin{equation*}
y=a e^{3 x}+b e^{-2 x} \tag{i}
\end{equation*}
$$

Here are two arbitrary constants a and b.
From (i), $\frac{\text { ay }}{\text { az }}=3 a e^{3 x}-2 b e^{-2 x}$
Again differentiating betisGUET Geadendiy, w.r.t. x,
$\frac{\mathrm{a}^{2} y}{\mathrm{az}^{2}}=9 a e^{3 x}+4 b e^{-2 x}$
Let us eliminate a and b from (i), (ii) and (iii).
Equation (ii) $-3 \times$ eqn. (i) gives (To eliminate a),

$$
\begin{equation*}
\frac{\text { ay }}{\text { az }}-3 y=-5 b e^{-2 x} \tag{iv}
\end{equation*}
$$

Again Eqn. (iii) $-3 \times$ eqn (ii) gives (again to eliminate a)

$$
\frac{a^{2} y}{a z^{2}}-3^{\text {ay }}=10 b e^{-2 x}
$$

Now Eqn. (v) $+2 \times$ eqn. (iv) gives (To eliminate b)

$$
\begin{gathered}
\frac{a^{2} y}{a z^{2}}-3 \frac{a y}{a y}+2\left(\frac{a y}{}-3 y\right)=10 b e^{-2 x}-10 b e^{-2 x} \\
\frac{a^{2} y}{a z^{2}}-3 \frac{a y}{a z}+2 \frac{a z}{a z}-6 y=0 \\
\frac{a^{2} y}{a z^{2}}-\frac{a y}{a z}-6 y=0
\end{gathered}
$$

or
which is the required D.E.
4. $y=e^{2 x}(a+b x)$

Sol. Equation of the given family of curves is

$$
\begin{equation*}
y=e^{2 x}(a+b x) \tag{i}
\end{equation*}
$$

Here are two arbitrary constants a and $b_{\dot{a}}$
From (i), $\underline{\text { ay }}=\left(\underline{\mathrm{a}} \mathrm{e}^{2 z)(a+b x)+e^{2 x}-(a+b x), ~(a)}\right.$
or
or

(By (i))
Again differentiating both sides of (ii), w.r.t. x

$$
\frac{a^{2} y}{a z^{2}}=2^{a y}+2 b e^{2 x}
$$

Let us eliminate b from eqns. (ii) and (iii), (as a is already absent in both (ii) and (iii))
From eqn. (ii) $\frac{\mathrm{ay}}{\mathrm{az}}-2 y=b e^{2 x}$
Putting this value of $b e^{2 x}$ in (iii), we have

which is the required D.E.
5. $y=e^{x}(a \cos x+b$ sind CUET

Sol. Equation of family of curves is is
$\begin{aligned} y & =e^{x}(a \cos x+b \sin x) \\ \therefore \quad \underline{a y} & =\left(\underline{\mathrm{a}} \mathrm{e}^{z}\right)(a \cos x+b \sin x)+e^{x}(-a \sin x+b \cos x) \\ & \end{aligned}$
or $\frac{\text { ay }}{\text { az }}=e^{x}(a \cos x+b \sin x)+e^{x}(-a \sin x+b \cos x)$
or $\frac{\text { ay }}{\mathrm{az}}=y+e^{x}(-a \sin x+b \cos x)$
(By (i))
Again differentiating both sides of eqn. (ii), w.r.t. x, we have
$\underline{a^{2} y}=\underline{a y}+e^{x}(-a \sin x+b \cos x)+e^{x}(-a \cos x-b \sin x)$
$a z^{2}$ az
or $\frac{a^{2} y}{a z^{2}}=\frac{a y}{a z}+\left\{\begin{array}{l}(\underline{a y}-y) \\ (a z\end{array}\right)-e^{x}(a \cos x+b \sin x)$
(By (ii))
or $\frac{a^{2} y}{a z^{2}}=2 \frac{a y}{a z}-y-y$
(By (i))
or $\frac{a^{2} y}{a z^{2}} \quad 2 \frac{a y}{a z}+2 y=0$ which is the required D.E.
6. Form the differential equation of the family of circles touching the \boldsymbol{y}-axis at the origin.
Sol. Clearly, a circle which touches y-axis at the origin must have its centre on x-axis.
$[\because x$-axis being at right angles to tangent y-axis is the normal or line of radius of the circle.]
\therefore The centre of circle is $(r, 0)$ where r is the radius of the circle.
\therefore Equation of required circles is

$$
\begin{array}{lcc}
& (x-r)^{2}+(y-0)^{2}=r^{2} & {\left[(x-\alpha)^{2}+(y-\beta)^{2}=r^{2}\right]} \\
\text { or } & x^{2}+r^{2}-2 r x+y^{2}=r^{2} & \\
\text { or } & x^{2}+y^{2}=2 r x & \ldots(i)
\end{array}
$$

where r is the only arbitrary constant.
\therefore Differentiating both sides of (i) only once w.r.t. x, we have

$$
\begin{equation*}
2 x+2 y \frac{a y}{a z}=2 r \tag{ii}
\end{equation*}
$$

To eliminate r, putting the value of $2 r$ from (ii) in (i),

$$
x^{2}+y^{2}=\underbrace{(2 z)^{\prime}}_{\left(2 z+2 y \underline{a y}_{x}\right.}
$$

or $\quad x^{2}+y^{2}=2 x^{2}+2 x y \frac{\text { ay }}{\text { az }}$
ay
or $-2 x y \overline{\mathrm{az}}-x^{2}+y^{2}=0$
CUET Multiplying by - 1, 2xy
$+x^{2}-y^{2}=0$
or $2 x y \frac{\text { ay }}{\frac{a z}{a z}}+x^{2}=y^{2}$ which is the required D.E.

Remark. The above question can also be stated as : Form the D.E. of the family of circles passing through the origin and having centres on x-axis.
7. Find the differential equation of the family of parabolas having vertex at origin and axis along positive \boldsymbol{y}-axis.
Sol. We know that equation of parabolas having vertex at origin and axis along positive y-axis is $x^{2}=4 a y$
Here a is the only arbitrary constant. So differentiating both sides of Eqn. (i) only once w.r.t. x, we have

$$
\begin{equation*}
2 x=4 a \frac{a y}{\mathrm{az}} \tag{ii}
\end{equation*}
$$

To eliminate a, putting

$$
\begin{aligned}
& 4 a=\frac{z^{2}}{y} \text { from (i) in (ii), we have } \\
& 2 x=\frac{z^{2}}{y} \text { ay } \\
& \Rightarrow 2 x y=x^{2} \frac{\text { ay }}{\mathrm{az}}
\end{aligned}
$$

Dividing both sides by $x, 2 y=x \frac{\mathrm{ay}}{\mathrm{az}}$
$\Rightarrow \quad x \frac{\mathrm{ay}}{\mathrm{az}}+2 y=0$
$\Rightarrow \quad x \frac{\mathrm{ay}}{\mathrm{az}}-2 y=0$ which is the required D.E.
8. Form the differential equation of family of ellipses having foci on y-axis and centre at the origin.

Sol. We know that equation of ellipses having foci on y-axis i.e., vertical ellipses with major axis as y-axis is

$$
\begin{equation*}
\frac{\mathrm{y}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{z}^{2}}{\mathrm{~b}^{2}}=1 \tag{i}
\end{equation*}
$$

Here a and b are two arbitrary X^{\prime} constants.

So we shall differentiate eqn.
(i) twice w.r.t. x.

Differentiating both sides of
(i) w.r.t. x, we have

F' Minor Axis
Focus

$$
(0,-a)
$$

Y^{\prime} 1 ay D5CUET Academy a $2^{2 y}$ az
or

$$
\frac{2}{\mathrm{a}^{2}} y \frac{\mathrm{ay}}{\mathrm{az}}=-\frac{2}{\mathrm{~b}^{2}} x
$$

Dividing both sides by 2 ,

$$
\begin{equation*}
\frac{1}{\mathrm{a}^{2}} y \frac{\mathrm{ay}}{\mathrm{az}}=\frac{-1}{\mathrm{~b}^{2}} x \tag{ii}
\end{equation*}
$$

Again differentiating both sides of (ii) w.r.t. x, we have

$$
\begin{equation*}
\frac{1}{a^{2}}\left[y \frac{a^{2} y}{a z^{2}}+\frac{a y}{a z} \cdot \frac{a y}{a z}\right]=\frac{-1}{b^{2}} \tag{iii}
\end{equation*}
$$

To eliminate a and b, putting this value of $\frac{-1}{\mathrm{~b}^{2}}$ from (iii) in (ii), the required differential equation is

or $x y \frac{a^{2} y}{a^{2}}+x \left\lvert\,\left(\frac{a y}{a z}\right)^{2}-y \frac{a y}{a z}=0\right.$
which is the required differential equation.
9. Form the differential equation of the family of hyperbolas having foci on
x-axis and centre at the origin.
Sol. We know that equation of hyperbolas having foci on x axis and centre at origin is

$$
\begin{equation*}
\frac{z^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \tag{i}
\end{equation*}
$$

Here a and b are two arbitrary constants. So we shall differentiate eqn. (i) twice w.r.t. x.
From (i), $\frac{\frac{1}{a^{2}} \cdot 2 x-\frac{1}{b^{2}} \cdot 2 y \frac{a y}{a z}=0 \text { or } \frac{\underline{2}}{a^{2} x=} \frac{\underline{2}}{b^{2}} y \frac{a y}{a z}}{a}$
Dividing both sides by 2, $\frac{1}{\mathrm{a}^{2}} x=\frac{1}{\mathrm{~b}^{2}}$ y $y \frac{\mathrm{ay}}{\mathrm{az}}$

Again differentiating both sides of (ii), w.r.t. x,

$$
\begin{aligned}
& \underline{1} \\
& a^{2} \cdot 1=\frac{1}{b^{2}}
\end{aligned}\left\lceil\left\lceil\frac{a^{2} y}{}+\underline{a y} \cdot a y\right\rceil\right.
$$

$$
\begin{equation*}
\text { or } \quad \frac{1}{a^{2}=} b^{2}\left|\underline{a^{2} y}(a y)^{2}\right| \tag{iii}
\end{equation*}
$$

Dividing eqn. (iii) by eqn. (ii), we have (To eliminate a and b)

$$
\underline{1}=\frac{y \frac{a^{2} y}{a z^{2}}+\left(\frac{a y}{a z}\right)^{2}}{y \frac{a z}{a z}}
$$

ay
Cross-multiplying, $x\left(\left.\begin{array}{l}\mathrm{y} \\ \mathrm{az}{ }_{2}\end{array}\right|_{\left.(\mathrm{az})^{\prime}\right)}\right)=y_{\mathrm{az}}$
or $\quad x y \frac{a^{2}}{a^{2}}+x\left(\frac{a y}{a z}\right)^{2}-y \frac{a y}{a z}=0$
which is the required differential equation.
10. Form the differential equation of the family of circles having centres on y-axis and radius 3 units.
Sol. We know that on y-axis, $x=0$.
\therefore Centre of the circle on y-axis is (o, β).
\therefore Equation of the circle having centre on y-axis and radius 3 units is

$$
\begin{equation*}
(x-0)^{2}+(y-\beta)^{2}=3^{2} \quad\left[(x-\alpha)^{2}+(y-\beta)^{2}=r^{2}\right] \tag{i}
\end{equation*}
$$

or $\quad x^{2}+(y-\beta)^{2}=9$
Here β is the only arbitrary constant. So we shall differentiate both sides of eqn. (i) only once w.r.t. x,
From (i), $2 x+2(y-\beta) \frac{a}{a z}(y-\beta)=0$
or $2 x+2(y-\beta) \frac{a y}{a z}=0$
or $\quad 2(y-\beta) \frac{a y}{a z}=-2 x \quad \therefore \quad y-\beta=\frac{-\underline{2 z}}{2 \frac{a y}{a z}}-\frac{z}{\frac{a y}{a z}}$
Putting this value of $(y-\beta$) in (i) (To eliminate β), we have

$$
x^{2}+\frac{z^{2}}{\left(\frac{a y)^{2}}{(a z}\right)^{2}}=9
$$

$$
(\text { ay })^{2}
$$

L.C.M. $=\left.\left.\right|_{(\mathrm{az}}\right|_{)}$. Multiplying both sides by this L.C.M.,

$$
x_{x}^{2} \left\lvert\, \frac{(a y)^{2}}{\left.(a z)^{2}+x^{2}=9\left(\frac{a y}{(a z}\right)^{2}\right)}\right.
$$

$2\left(\right.$ ay $^{2} \quad(\text { ay })^{2} \quad 2 \quad 2 \quad(\text { ay })^{2} 2$
$\left.\Rightarrow x|(\mathbf{a z})-9|_{(a z)}\right)^{2}+x=0 \quad$ or $\left.\left.\left.\quad(x-9)\right|_{(a z}\right)^{\prime}\right)+x=0$
which is the required differential equation.
11. Which of the followissditetrential equation has $y=c_{1} e^{x}$
$+c_{2} e^{-x}$ as the general solution?
(A) $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}+y=0$
(B) $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}-y=0$
$d^{2} y$
$d^{2} y$
(C) $\mathrm{dx}^{2}+\mathbf{1}=\mathbf{o}$
(D) $\mathrm{dx}^{2}-\mathbf{1}=\mathbf{0}$

Sol. Given: $y=c_{1} e^{x}+c_{2} e^{-x}$
$\therefore \quad \underline{\mathrm{ay}}=c_{1} e^{x}+c_{2} e^{-x}(-1)=c_{1} e^{x}-c_{2} e^{-x}$
$\therefore \quad \frac{\mathrm{a}^{2} \mathrm{y}}{\mathrm{az}^{2}}=c_{1} e^{\mathrm{x}}-\mathrm{c}_{2} e^{-x}(-1)=c_{1} e_{2}^{x}+c^{-x}$ $\frac{a^{2} y}{a z^{2}}=y$
or $\frac{a^{2} y}{a z^{2}}-y=0$ which is differential equation given in option (B)
\therefore Option (B) is the correct answer.
12. Which of the following differential equations has $y=x$ as one of its particular solutions?
(A) $\frac{\mathrm{d}^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=x$
(B) $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}+x \frac{\mathrm{dy}}{\mathrm{dx}}+x y=x$
(C) $\frac{\mathrm{d}^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=0$
(D) $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+x \frac{\mathrm{dy}}{\mathrm{dx}}+x y=\mathbf{0}$

Sol. Given: $y=x$
$\therefore \quad \frac{a y}{a z}=1$ and $\frac{a^{2} y}{a z^{2}}=0$
ay $\quad a^{2} y$
These values of $y, a z$ and $\overline{\mathrm{az}^{2}}$ clearly satisfy the D.E. of option (C).
$\left[\because \quad\right.$ L.H.S. of D.E. of option $(C)=\begin{array}{l}a^{2} y \\ \underline{a z^{2}}\end{array} x^{2} \frac{a y}{a z}+x y$
$=0-x^{2}(1)+x(x)=-x^{2}+x^{2}=0=$ R.H.S. of option (C)]
\therefore Option (C) is the correct answer.
Exercise 9.4 (Page No. 395-397)
For each of the differential equations in Exercises 1 to 4, find the general solution:

1. $\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}$

Sol. The given differential equation $\stackrel{\mathrm{ir}}{\mathrm{i}}$

$$
\frac{\text { ay }}{\text { az }}=\frac{1-\cos z}{1+\cos z} \text { ASUET } \frac{1-\cos z}{\text { Acadfintycos } z}
$$

$d x$.

$$
\begin{aligned}
& \text { Integrating both sides, } \int \text { ay }=\frac{2}{2 \cos ^{2} \frac{2}{2}} d x \\
& \text { or } y=\int \tan ^{2} \frac{z}{2} d x=\int\left(\sec ^{2} \underline{z}_{-1}\right) d x=\left.\frac{\tan \frac{z}{2}-x+c}{2}\right|_{2}
\end{aligned}
$$

Exercise 9.4

For each of the differential equations in Exercises 1 to 4, find the general solution:

$$
\text { 1. } \frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}
$$

Sol. The given differential equation is

$$
\begin{aligned}
& \frac{\mathrm{ay}}{\mathrm{az}}=\frac{1-\cos z}{1+\cos z} \text { or } d y=\frac{1-\cos z}{1+\cos z} d x . \\
& 2 \sin ^{2} \underline{Z} \\
& \text { Integrating both sides, } \quad \int \text { ay }=\frac{2}{2 \cos ^{2} \frac{z}{2}} d x \\
& \text { or } y=\int \tan ^{2} \underline{\underline{z}} d x=\int\left(\sec ^{2} \underline{\underline{z}}-1\right) d x=\frac{\tan \frac{\mathbf{z}}{2}-x+c}{} \\
& 2 \quad l_{1} 2
\end{aligned}
$$

or $y=2 \tan \frac{\mathrm{Z}}{2}-x+c$
which is the required general solution.
2. $\frac{d y}{d x}=\sqrt{4-y^{2}}(-2<y<2)$
ay

Sol. The given D.E. is $\frac{\mathrm{ay}}{\mathrm{az}}=\sqrt{4-\mathrm{y}^{2}} \quad \Rightarrow d y=\sqrt{4-\mathrm{y}^{2}} d x$
Separating variables, $\frac{}{\sqrt{4-\mathrm{y}_{\mathrm{ay}}^{2}}}=d x$
Integrating both sides, $\int \frac{\sqrt{2^{2}-y^{2}}}{} d y=\int 1 d x$

3. $\frac{\mathrm{dy}}{\mathrm{dx}}+y=1 \quad(y \neq 1)$

Sol. The given differential equation is $\overline{\mathrm{az}}+y=1$

$$
\Rightarrow \quad \frac{\mathrm{ay}}{\mathrm{az}}=1-y \quad \Rightarrow d y=(1-y) d x \quad \Rightarrow d y=-(y-1) d x
$$

Separating variables, $\frac{a y}{y-1}=-d x$
ay
Integrating both sides, $\int \overline{y-1}=-\int 1 d x$
$\Rightarrow \log |y-1|=-x+c$
$\Rightarrow \quad|y-1|=e^{-x+c} \quad\left[\because\right.$ If $\log x=t$, then $\left.x=e^{t}\right]$
$\Rightarrow \quad y-1= \pm e^{-x+c} \quad \Rightarrow y=1 \pm e^{-x} e^{c}$
$\Rightarrow \quad y=1 \pm e^{c} e^{-x}$
$\Rightarrow \quad y=1+\mathrm{A} e^{-x}$ where $\mathrm{A}= \pm e^{c}$
which is the required general solution.
4. $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$

Sol. The given differential equation is

$$
\sec ^{2} x \tan d 3 \text { ACAGTemtan } x d y=0
$$

Dividing by $\tan x \tan y$, we have

$$
\frac{\sec ^{2} z}{\tan z} d x+\frac{\sec ^{2} y}{\tan y} d y=0 \quad \text { (Variables separated) }
$$

Integrating both sides, $\int \frac{\sec ^{2} z}{\tan z} d x+\int \frac{\sec ^{2} y}{\tan y} d y=\log c$
or $\log |\tan x|+\log |\tan y|=\log c \quad\left[\left.\because \int \frac{\mathrm{f}^{\prime}(\mathrm{z})}{\mathrm{f}(\mathrm{z})} \mathrm{az}=\log \mathbf{I}\left(^{\mathrm{z}}\right) \mathbf{I} \right\rvert\,\right.$
or $\log |(\tan x \tan y)|=\log c \quad$ or $\quad|\tan x \tan y|=c$
$\therefore \tan x \tan y= \pm c=\mathrm{C}$ where $\mathrm{C}= \pm c$.

$$
[\because \quad|t|=a(a \geq 0) \Rightarrow t= \pm a]
$$

which is the required general solution.
For each of the differential equations in Exercises 5 to 7, find the general solution:
5. $\left(e^{x}+e^{-x}\right) d y-\left(e^{x}-e^{-x}\right) d x=0$

Sol. The given D.E. is $\left(e^{x}+e^{-x}\right) d y=\left(e^{x}-e^{-x}\right) d x$
or $d y=\left(\frac{\mathrm{e}^{z}-\mathrm{e}^{-\mathrm{z}}}{\left(\mathrm{e}^{\mathrm{z}}+\mathrm{e}^{-\mathrm{z}}\right.}\right), d x$

which is the required general solution.
6. $\frac{\mathrm{dy}}{\mathrm{dx}}=\left(1+x^{2}\right)\left(1+y^{2}\right)$

Sol. The given differential equation is

$$
\frac{\text { ay }}{\text { az }}=\left(1+x^{2}\right)\left(1+y^{2}\right)
$$

$\Rightarrow \quad d y=\left(1+x^{2}\right)\left(1+y^{2}\right) d x$
Separating variables,

$$
\frac{a y}{1+y^{2}}=\left(1+x^{2}\right) d x
$$

Integrating both sides,
$\int y^{2}+1 d y=\int\left(z^{2}+1\right) d x \quad \Rightarrow \quad \tan ^{-1} y=\frac{z^{3}}{3}+x+c$
which is the required general solution.
7. $y \log y d x-x d y=0$

Sol. The given differential equation is $y \log y d x-x d y=0$
$\Rightarrow-x d y=-y \log y d x$
Separating variables,

$$
\begin{equation*}
\frac{a y}{y \log y}=\frac{a z}{z} \tag{i}
\end{equation*}
$$

Integrating both sides $\quad \int \overline{y \log y}=\int \bar{z}$
CUET
For integral on left handsfor cadtehog $y=t$.
$\therefore \frac{1}{y}=\frac{a t}{a y} \quad \Rightarrow \quad \frac{a y}{a^{y}}=d t$
\therefore Eqn. (i) becomes $\int \overline{\mathrm{t}}=\int \overline{\mathrm{z}}$
$\Rightarrow \log |t|=\log |x|+\log |c|^{*}$
$=\log |x c|$
$\Rightarrow \quad|t|=|x c|$
$\Rightarrow \quad t= \pm x c$
$[\because|x|=|y| \Rightarrow x= \pm y]$
$\Rightarrow \quad \log y= \pm x c=a x \quad$ where $a= \pm c$
$\therefore y=e^{a x}$ which is the required general solution.
For each of the differential equations in Exercises 8 to 10, find the general solution:
8. $x^{5} \frac{d y}{d x}=-y^{5}$

Sol. The given differential equation is $x^{5} \frac{a y}{a z}=-y^{5}$
$\Rightarrow \quad x^{5} d y=-y^{5} d x$
Separating variables, $\frac{a y}{\left(y^{5}\right)}=-\frac{a z}{\left(z^{5}\right)} \Rightarrow y^{-5} d y=-x^{-5} d x$
Integrating both sides, $\int \mathrm{y}^{-5} d y=-\int \mathrm{z}^{-5} d x$

Multiplying by $-4, \quad y^{-4}=-x^{-4}-4 c$
$\Rightarrow x^{-4}+y^{-4}=-4 c \quad \Rightarrow x^{-4}+y^{-4}=\mathrm{C}$ where $\mathrm{C}=-4 c$
which is the required general solution.
9. $\frac{d y}{d x}=\sin ^{-1} x$

Sol. The given differential equation is $\frac{a y}{a z}=\sin ^{-1} x$
or $\quad d y=\sin ^{-1} x d x$
Integrating both sides, $\quad \int 1 d y=\int \sin ^{-1} \mathrm{z} d x$
or $\quad y=\int \sin ^{-1} z \cdot 1 d x$
Applying product rule,

$$
\begin{aligned}
y & =\left(\sin ^{-1} x\right) \int 1 d x-\int \frac{\mathrm{a}}{\mathrm{az}}\left(\sin ^{-1} x\right) \int 1 d x d x \\
& =x \sin ^{-1} x-\int \frac{1}{\text { DSCET }} x d x
\end{aligned}
$$

To evaluate $\int_{\frac{z}{\sqrt{1-\mathrm{z}^{2}}}} d x{\underline{\underline{~}}=-\frac{\bar{y}^{1-\underline{\underline{z}}^{2}}}{2}}^{\frac{-2 z}{\sqrt{1-\mathrm{z}^{2}}}} d x$
Put $1-x^{2}=t$. Differentiate $-2 x d x=d t$

[^0]$\therefore \int \frac{\mathrm{z}}{\sqrt{1-\mathrm{z}^{2}}} d x=-\frac{1}{2} \int_{\frac{\mathrm{at}}{\sqrt{\mathrm{t}}}}=-\frac{1}{2} \int \mathrm{t}^{-1 / 2} d t$
$$
=-\frac{1}{2} \frac{t^{1 / 2}}{1 / 2}=-\sqrt{t}=-\sqrt{1-z^{2}}
$$

Putting this value of $\int \frac{\mathrm{z}}{\sqrt{1-\mathrm{z}^{2}}} d x$ in (i), the required general solution is

$$
y=x \sin ^{-1} x+\sqrt{\sqrt{1-\mathrm{z}^{2}}}+c
$$

10. $e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$

Sol. The given equation is $e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$
Dividing every term by $\left(1-e^{x}\right) \tan y$, we have

$$
\frac{\mathrm{e}^{\mathrm{z}}}{1-\mathrm{e}^{\mathrm{z}}} d x+\frac{\sec ^{2} \mathrm{y}}{\tan \mathrm{y}} d y=0 \quad \text { (Variables } \quad \text { separated) }
$$

Integrating both sides, $\int \frac{\mathrm{e}^{\mathrm{z}}}{1-\mathrm{e}^{\mathrm{z}}} d x+\int \frac{\sec ^{2} \mathrm{y}}{\tan \mathrm{y}} d y=c$

」

$$
\text { or } \quad \frac{\mid \tan \mathrm{y} \mathbf{I}}{\mid 1-\mathrm{e}^{\mathrm{z}} \mathbf{I}}=c^{\prime}
$$

or $\quad \tan y=\mathrm{C}\left(1-e^{x}\right) . \quad\left[\because \quad|t|=c^{\prime} \Rightarrow t= \pm c^{\prime}=\mathrm{C}\right.$ (say) $]$ For each of the differential equations in Exercises 11 to 12, find a particular solution satisfying the given condition:
11. $\left(x^{3}+x^{2}+x+1\right) \frac{\mathrm{dy}}{\mathrm{dx}}=2 x^{2}+x, y=1$, when $x=0$

Sol. The given differential equation is $\left(x^{3}+x^{2}+x+1\right) \frac{\text { ay }}{\mathrm{az}}=2 x^{2}+x$
$\therefore\left(x^{3}+x^{2}+x+1\right) d y=\left(2 x^{2}+x\right) d x$
Separating variables $d y=\frac{\left(2 z^{2}+z\right)}{z^{3}+z^{2}+z+1} d x$
or

$$
d y=\frac{2 z^{2}+z}{(z+1)\left(z^{2}+1\right)} d x
$$

$\left[\because x^{3}+x^{2}+x+1=x^{2}(x+1)+(x+1)=(x+1)\left(x^{2}+1\right)\right]$
Integrating both sides, we have
$\int 1 d y=\int \frac{2 z^{2}+z}{(z+1)\left(z^{2}+1\right)} d x \quad$ or $\quad y=\int \frac{2 z^{2}+z}{(z+1)\left(z^{2}+1\right)} d x$

Let $\frac{2 z^{2}+z}{(z+1)\left(z^{2}+1\right)}=\frac{A}{z+1}+\frac{B z+C}{z^{2}+1}$ (Partial fractions)
Multiplying both sides by L.C.M. $=(x+1)\left(x^{2}+1\right)$, we have $2 x^{2}+x=\mathrm{A}\left(x^{2}+1\right)+(\mathrm{B} x+\mathrm{C})(x+1)$
or $\quad 2 x^{2}+x=\mathrm{A} x^{2}+\mathrm{A}+\mathrm{B} x^{2}+\mathrm{B} x+\mathrm{C} x+\mathrm{C}$
Comparing coeff. of x^{2} on both sides, we have

$$
\begin{equation*}
A+B=2 \tag{iii}
\end{equation*}
$$

Comparing coeff. of x on both sides, we have

$$
\begin{equation*}
B+C=1 \tag{iv}
\end{equation*}
$$

Comparing constants $\mathrm{A}+\mathrm{C}=0$
Let us solve eqns. (iii), (iv) and (v) for A, B, C eqn. (iii) - eqn. (iv) gives to eliminate B,

$$
\begin{equation*}
\mathrm{A}-\mathrm{C}=1 \tag{vi}
\end{equation*}
$$

Adding (v) and (vi), $2 \mathrm{~A}=1$ or $\mathrm{A}=\frac{1}{2}$
From (v),

$$
\mathrm{C}=-\mathrm{A}=-\frac{1}{2}
$$

Putting $\mathrm{C}=-\frac{1}{2}$ in (iv), $\mathrm{B}-\frac{1}{2}=1$ or $\mathrm{B}=1+\frac{1}{2}=\frac{3}{2}$
Putting these values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in (ii), we have

$$
\begin{aligned}
& \frac{2 z^{2}+{ }_{2}}{(z+1)(z+1)}=\frac{\frac{1}{2}}{z+1}+\frac{\frac{3}{2} z-\frac{1}{2}}{z^{2}+1} \\
& =\frac{1}{2} \frac{1}{z+1}+\frac{3}{2} \cdot \frac{z}{z^{2}+1}-\frac{1}{2} \frac{1}{z^{2}+1} \\
& =\frac{1}{2} \frac{1}{2+1}+\frac{3}{4} \cdot \frac{2 z}{z^{2}+1}-\frac{1}{2} \frac{1}{z^{2}+1}
\end{aligned}
$$

Putting this value in (i)

$$
\begin{align*}
& y=\frac{1}{2} \int \frac{1}{\mathrm{z}+1} d x+\frac{3}{4} \int \frac{2 \mathrm{z}}{\mathrm{z}^{2}+1} d x-\frac{1}{2} \int \frac{1}{\mathrm{z}^{2}+1} d x \\
& y=\frac{1}{2} \log (x+1)+\frac{3}{4} \log \left(x^{2}+1\right)-\frac{1}{\tan ^{-1} x+c} \tag{vii}
\end{align*}
$$

CU.ET $2 z$
Academy
L $\quad z+1$
()

To find c

When $x=0, y=1$ (given)
Putting $x=0$ and $y=1$ in (vii),

$$
1=\frac{1}{2} \log 1+\frac{3}{4} \log 1-\frac{1}{2} \tan ^{-1} 0+c
$$

or $\quad 1=c$
$\left[\because \log 1=0\right.$ and $\left.\tan ^{-1} 0=0\right]$
Putting $c=1$ in eqn. (vii), the required solution is

$$
\begin{aligned}
y & =\frac{1}{2} \log (x+1)+\frac{3}{4} \log \left(x^{2}+1\right)-\frac{1}{2} \tan ^{-1} x+1 . \\
y & =\frac{1}{4}\left[2 \log (x+1)+3 \log \left(x^{2}+1\right)\right]-\frac{1}{2} \tan ^{-1} x+1 \\
& =\frac{1}{4}\left[\log (x+1)^{2}+\log \left(x^{2}+1\right)^{3}\right]-\frac{1}{2} \tan ^{-1} x+1 \\
& =\frac{1}{4}\left[\log (x+1)^{2}\left(x^{2}+1\right)^{3}\right]-\frac{1}{2} \tan ^{-1} x+1
\end{aligned}
$$

which is the required particular solution.
12. $x\left(x^{2}-1\right) \frac{\mathrm{dy}}{\mathrm{dx}}=1 ; y=0$ when $x=2$.

Sol. The given differential equation is $x\left(x^{2}-1\right) \frac{a y}{a z}=1$
$\Rightarrow x\left(x^{2}-1\right) d y=d x \quad \Rightarrow d y=\frac{\mathrm{az}}{\mathrm{z}\left(\mathrm{Z}_{1}^{2}-1\right)}$
Integrating both sides, $\quad \int 1 d y=\int z\left(z^{2}-1\right) d x$
$\Rightarrow y=\int+1 \quad d x+c$

$$
\begin{equation*}
\overline{z(z \quad 1)(z \quad 1)} \tag{i}
\end{equation*}
$$

Let the integrand $\frac{1}{z(+1)(z 1)}=\frac{A}{z}+\frac{B}{z+1}+\frac{C}{z-1}$
(By Partial Fractions)
Multiplying by L.C.M. $=x(x+1)(x-1)$,

$$
1=\mathrm{A}(x+1)(x-1)+\mathrm{B} x(x-1)+\mathrm{C} x(x+1)
$$

or $1=\mathrm{A}\left(x^{2}-1\right)+\mathrm{B}\left(x^{2}-x\right)+\mathrm{C}\left(x^{2}+x\right)$
or $1=\mathrm{A} x^{2}-\mathrm{A}+\mathrm{B} x^{2}-\mathrm{B} x+\mathrm{C} x^{2}+\mathrm{C} x$
Comparing coefficients of x^{2}, x and constant terms on both sides, we have
$\boldsymbol{x}^{2}: \quad \mathrm{A}+\mathrm{B}+\mathrm{C}=0$
x :

$$
\begin{equation*}
-B+C=0 \Rightarrow C=B \tag{iii}
\end{equation*}
$$

Constants $-\mathrm{A}=1$ or $\mathrm{A}=-1$
Putting $\mathrm{A}=-1$ and $\mathrm{C}=\mathrm{B}$ from (iv) in (iii),
\therefore From (iv), $\mathrm{C}=\mathrm{B}=\frac{1}{2}$
Putting these values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in (ii),

$$
\frac{1}{z(z+1)(z-1)}=\frac{-1}{z}+\frac{\frac{1}{2}}{z+1}+\frac{\frac{1}{2}}{z-1}
$$

$\therefore \quad \int+1-\int x=-\int \frac{1}{1} d x+1 \int-1 / d x+\frac{1}{-} d x$

$$
\begin{array}{lllllll}
z\left(\begin{array}{ll}
z & 1
\end{array}\right)\left(\begin{array}{ll}
z & 1
\end{array}\right) \quad z & 2 & z+1 & 2 & z-1
\end{array}
$$

$$
=-\log |x|+\frac{1}{2} \log |x+1|+\frac{1}{} \log |x-1|
$$

$$
2
$$

$$
=\frac{1}{2}[-2 \log |x|+\log |x+1|+\log |x-1|]
$$

$$
=\frac{1}{2}\left[-\log |x|^{2}+\log |(x+1)(x-1)|\right]
$$

Putting this value in (i),

$$
\begin{equation*}
y=\frac{1}{2} \log \left|\frac{z^{2}-1}{z^{2}}\right|+c \tag{v}
\end{equation*}
$$

To find \boldsymbol{c} for the particular solution

Putting $y=0$, when $x=2$ (given) in (v),

$$
0=\frac{1}{2} \log \frac{3}{4}+c \quad \Rightarrow c=\frac{-1}{2} \log \frac{3}{4}
$$

Putting this value of c in (v), the required particular solution is

$$
y=\frac{1}{2} \log \left|\frac{z^{2}-1}{z^{2}}\right|-1 \quad \log \underline{3}
$$

$$
24
$$

To evaluate

$$
=\mathbf{O R}
$$

$$
\frac{\mathrm{z}}{} d x=1 \int-
$$

$$
\underline{2 z} d x
$$

$$
\int_{z\left(z^{2}-1\right)} \quad \int z^{2}\left(z^{2}-1\right) \quad 2 \quad z^{2}\left(z^{2}-1\right)
$$

Put $x^{2}=t$.
For each of the differential equations in Exercises 13 to 14, find a particular solution satisfying the given condition:
13. $\cos \left\lfloor\frac{\mathrm{d} y}{(\mathrm{dx}}\right)=a(a \in \mathrm{R}) ; \boldsymbol{y}=\boldsymbol{1}$ when $x=0$

Sol. The given differential equation is

$$
\begin{aligned}
& \cos \frac{\mathrm{ay}}{\mathrm{az}}=a(a \in \mathrm{R}) ; y=1 \text { when } x=0 \\
& \frac{\mathrm{ay}}{\mathrm{az}}=\cos ^{-1} a \quad \text { CUEA } \Rightarrow d y=\left(\cos ^{-1} a\right) d x \\
& \text { Academy }
\end{aligned}
$$

Integrating both sides

$$
\begin{align*}
\int 1 d y & =\int\left(\cos ^{-1} a\right) d x \\
y & =\left(\cos ^{-1} a\right) x+c \tag{i}
\end{align*} \quad \Rightarrow y=\left(\cos ^{-1} a\right) \int 1 d x
$$

To find \boldsymbol{c} for particular solution

$$
y=1 \text { when } x=0 \text { (given) } \quad \therefore \text { From }(i), 1=c .
$$

Putting $c=1$ in (i), $y=x \cos ^{-1} a+1$
$\Rightarrow y-1=x \cos ^{-1} a \quad \Rightarrow \quad \frac{\mathrm{y}-1}{\mathrm{z}}=\cos ^{-1} a$
$\Rightarrow \cos (y-1)=a$ which is the required particular solution. ! z リ
14. $\frac{\mathrm{dy}}{\mathrm{dx}}=y \tan x ; y=1$ when $x=0$

Sol. The given differential equation is $\underline{\text { ap }}=y \tan x$ az
$\Rightarrow d y=y \tan x d x$
by
Separating variables, $\bar{y}=\tan x d x$
Integrating both sides $\int_{y}^{1} d y=\int \tan z d x$
$\Rightarrow \quad \log |y|=\log |\sec x|+\log |c|$
$\Rightarrow \quad \log |y|=\log |c \sec x| \quad \Rightarrow \quad|y|=|c \sec x|$
$\therefore \quad y= \pm c \sec x$
or $\quad y=\mathrm{C} \sec x$
where $\mathrm{C}= \pm c$
To find \mathbf{C} for particular solution
Putting $y=1$ and $x=0$ in (i), $1=\mathrm{C} \sec 0=\mathrm{C}$
Putting $\mathrm{C}=1$ in (i), the required particular solution is $y=\sec x$.
15. Find the equation of a curve passing through the point (0,0) and whose differential equation is $y^{\prime}=e^{x} \sin x$.
Sol. The given differential equation is $y^{\prime}=e^{x} \sin x$

$$
\begin{align*}
& \Rightarrow \frac{\mathrm{ay}}{\mathrm{az}}=e^{x} \sin x \quad \Rightarrow d y=e^{x} \sin x d x \\
& \text { Integrating both sides, } \int 1 d y=\int \mathrm{e}^{\mathrm{z}} \sin \mathrm{z} d x \\
& \text { or } \quad y=\mathrm{I}+\mathrm{C} \tag{i}\\
& \text { where } \mathrm{I}=\int \mathrm{e}^{\mathrm{z}} \sin \mathrm{z} d x \tag{ii}\\
& \left\lceil\text { Applying Product rule } \int I . I I a z=I \int I I a z-\int\left(\frac{a}{a z}(I) \int I I a z|a z|\right.\right. \\
& =e^{x}(-\cos x)-\int \mathrm{e}^{\mathrm{z}}(-\cos \mathrm{z}) d x \\
& \Rightarrow \quad \mathrm{I}=-e^{x} \cos x+\int \mathrm{e}^{\mathrm{z}} \cos \mathrm{z} d x \\
& \text { Again applying product Academy }
\end{align*}
$$

$$
\begin{aligned}
& \quad \mathrm{I}=-e^{x} \cos x+e^{x} \sin x-\int \mathrm{e}^{\mathrm{z}} \sin \mathrm{z} d x \\
& \Rightarrow \quad \mathrm{I}=e^{x}(-\cos x+\sin x)-\mathrm{I} \\
& \text { Transposing } 2 \mathrm{I}=e^{x}(\sin x-\cos x) \\
& \therefore \quad \mathrm{I}=\frac{\mathrm{e}^{\mathrm{z}}}{2}(\sin x-\cos x)
\end{aligned}
$$

Putting this value of I in (i), the required solution is

$$
\begin{equation*}
y=\frac{1}{2} e^{x}(\sin x-\cos x)+c \tag{iii}
\end{equation*}
$$

To find \boldsymbol{c}. Given that required curve (i) passes through the point (0, 0).
Putting $x=0$ and $y=0$ in (iii),

$$
0=\frac{1}{2}(-1)+c \quad \text { or } \quad 0=\frac{-1}{2}+c \quad \therefore \quad c=\frac{1}{2}
$$

Putting $c=\frac{1}{2}$ in (iii), the required equation of the curve is

$$
y=\frac{1}{2} e^{x}(\sin x-\cos x)+\frac{1}{2}
$$

L.C.M. $=2 \therefore 2 y=e^{x}(\sin x-\cos x)+1$ or $2 y-1=e^{x}(\sin x-\cos x)$
which is the required equation of the curve.

> dy
16. For the differential equation $x y d \bar{x}=(x+2)(y+2)$, find the solution curve passing through the point $(1,-1)$.
Sol. The given differential equation is $x y \frac{\text { ay }}{a z}=(x+2)(y+2)$
$\Rightarrow \quad x y d y=(x+2)(y+2) d x$
Separating variables $\quad \frac{\mathrm{y}}{\mathrm{y}+2} \quad d y=\frac{\mathrm{z}+2}{\mathrm{z}} d x$

Integrating both sides, $\frac{\mathrm{Y}}{\mathrm{y}+2} d y=\int \frac{\mathrm{z}+2}{\mathrm{z}} d x$

$$
\begin{array}{ll}
\Rightarrow & \int \frac{y+2-2}{y+2}
\end{array} d y=\int\left(\begin{array}{l}
\left.\underline{z}+\frac{2}{y}\right) \\
z \\
z
\end{array}\right) d x
$$

$$
\left.\Rightarrow \quad \int \left\lvert\, 1-\frac{2}{\mathrm{y}+2}\right.\right)^{\prime} d y=\int\left(1+\frac{2}{\mathrm{z}}\right), d x
$$

$$
\Rightarrow y-2 \log |y+2|=x+2 \log |x|+c
$$

$$
\Rightarrow y-x=\log (y+2)^{2}+\log x^{2}+\left.c \quad|\because| x\right|^{2}=x^{2}
$$

$$
\begin{equation*}
\Rightarrow y-x=\log \left((y+2)^{2} x^{2}\right)+c \tag{i}
\end{equation*}
$$

To find c. Curve (i) passes through the point $(1,-1)$.
Putting $x=1$ and $y=-1$ in (i), $-1-1=\log (1)+c$ or $-2=c$

Putting $c=-2$ in (i), the particular solution curve is
$y-x=\log \left((y+2)^{2} x^{2}\right)-2$
or $y-x+2=\log \left((y+2)^{2} x^{2}\right)$.
17. Find the equation of the curve passing through the point $(0,-2)$ given that at any point (x, y) on the curve the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point.

Sol. Let $\mathrm{P}(x, y)$ be any point on the required curve.
According to the question,
(Slope of the tangent to the curve at $\mathrm{P}(x, y)) \times y=x$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} \cdot y=x \Rightarrow y d y=x d x$
Now variables are separated.
Integrating both sides $\int \mathrm{y} d y=\int \mathrm{x} d x \quad \therefore \quad \mathrm{y}^{2}=\frac{\underline{\mathrm{x}}^{2}}{2}+c$
Multiplying by L.C.M. $=2, y^{2}=x^{2}+2 c$
or $\quad y^{2}=x^{2}+\mathrm{A}$
where $\mathrm{A}=2 c$.
Given: Curve (i) passes through the point $(0,-2)$.
Putting $x=0$ and $y=-2$ in (i), $4=\mathrm{A}$.
Putting $\mathrm{A}=4$ in (i), equation of required curve is

$$
y^{2}=x^{2}+4 \text { or } y^{2}-x^{2}=4
$$

18. At any point (x, y) of a curve the slope of the tangent is twice the slope of the line segment joining the point of contact to the point $(-4,-3)$. Find the equation of the curve given that it passes
through (-2, $\mathbf{1}$).
Sol. According to question, slope of the tangent at any point $\mathrm{P}(x, y)$ of the required curve.

$$
\begin{aligned}
&= 2 . \text { (Slope of the line } \\
& \text { joining the point of } \\
& \text { contact } \mathrm{P}(x, y) \text { to thegiven } \\
&\text { point } \mathrm{A}(-4,-3)) .
\end{aligned}
$$

$\Rightarrow \frac{d y}{d x}=2$| $\left.\left\lvert\, \frac{(y-(-3)}{x-(-4)}\right.\right)$ | |
| :---: | :---: |
| $($ | $\frac{y_{2}-y_{1}}{x-x}$ |
| $2 \quad 1$ | |

$\Rightarrow \quad \frac{d y}{d x}=\frac{2(y+3)}{(x+4)}$
Cross-multiplying, $(x+4) d y=2(y+3) d x$
Separating variables, $\frac{\mathrm{dy}}{\mathrm{y}+3}=\frac{2}{\mathrm{x}+4} d x$ $1^{x+4} 1$
Integrating both sides, $\int \overline{\mathrm{y}+3} d y=2 \int \overline{\mathrm{x}+4} d x$
$\Rightarrow \log |y+3|=2 \log |+4+4+\log | c \mid$
(For $\log |c|$, see Foot Norarased

$$
\begin{array}{lc}
\Rightarrow & \log |y+3|=\log |x+4|^{2}+\log |c|=\log |c|(x+4)^{2} \\
\Rightarrow & |y+3|=|c|(x+4)^{2} \\
\Rightarrow & y+3= \pm|c|(x+4)^{2} \\
\Rightarrow & y+3=\mathrm{C}(x+4)^{2}
\end{array} \quad \ldots(i) \text { where } \mathrm{C}= \pm|c|
$$

To find C. Given that curve (i) passes through the point ($-2,1$).
Putting $x=-2$ and $y=1$ in (i),

$$
1+3=\mathrm{C}(-2+4)^{2} \quad \text { or } \quad 4=4 \mathrm{C} \quad \Rightarrow \quad \mathrm{C}=\frac{4}{4}=1
$$

Putting $\mathrm{C}=1$ in (i), equation of required curve is

$$
y+3=(x+4)^{2} \text { or }(x+4)^{2}=y+3 .
$$

19. The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.
Sol. Let x be the radius of the spherical balloon at time t.
Given: Rate of change of volume of spherical balloon is constant
$=k$ (say)
$\Rightarrow \quad \underline{\mathrm{a}}\left(\underline{4 \pi} \mathrm{z}^{3}\right)=k \Rightarrow \underline{4 \pi} 3 x^{2} \underline{\mathrm{az}}=k \Rightarrow 4 \pi x^{2} \underline{\underline{\mathrm{az}}}=k$
\quad at $(3) y$
Separating variables, $\quad 4 \pi x^{2} d x=k d t$
Integrating both sides, $4 \pi \int \mathrm{z}^{2} d x=k \int 1 d t$
$\Rightarrow 4 \pi \frac{z^{3}}{3}=k t+c$
To find c : Given: Initially radius is 3 units.
\Rightarrow When $t=0, x=3$
Putting $t=0$ and $x=3$ in (i), we have

$$
\begin{equation*}
\frac{4 \pi}{3}(27)=c \quad \text { or } \quad c=36 \pi \tag{ii}
\end{equation*}
$$

To find k : Given: When $t=3 \mathrm{sec}, x=6$ units
Putting $t=3$ and $x=6$ in (i), $\frac{4 \pi}{3}(6)^{3}=3 k+c$.
Putting $c=36 \pi$ from (ii), $\frac{4 \pi}{3}(216)=3 k+36 \pi$
or $4 \pi(72)-36 \pi=3 k \quad \Rightarrow 288 \pi-36 \pi=3 k$
or $\quad 3 k=252 \pi \quad \Rightarrow k=84 \pi$
Putting values of c and k from (ii) and (iii) in (i), we have

$$
\begin{equation*}
\frac{4 \pi}{3} x^{3}=84 \pi t+36 \pi \tag{iii}
\end{equation*}
$$

$\Rightarrow x^{3}=63 t+27 \quad \Rightarrow x=(63 t+27)^{1 / 3}$.
20. In a bank principal increases at the rate of $r \%$ per year.Find the value of r if ${ }^{100}$ double itself in 10 years. $\left(\log _{e} 2=\right.$ o.6931)

Sol. Let P be the principal (amount) at the end of t years.
According to given, rate of increase of principal per year

$$
=r \%(\text { of the principal })
$$

$\Rightarrow \quad \frac{\mathrm{aP}}{\mathrm{at}}=\frac{\mathrm{r}}{100} \times \mathrm{P}$
Separating variables, $\quad \frac{\underline{\mathrm{a}}^{\mathrm{P}}}{\mathrm{P}}=\frac{\mathrm{r}}{100} d t$
Integrating both sides, $\quad \log \mathrm{P}=\frac{\mathrm{r}}{100} t+c$
(Clearly P being principal is >0, and hence $\log |\mathrm{P}|=\log \mathrm{P}$)
To find c. Initial principal $=` 100$ (given)
i.e., When $t=0, \mathrm{P}=100$

Putting $t=0$ and $\mathrm{P}=100$ in (i), $\log 100=c$.
Putting $c=\log 100$ in (i), $\log \mathrm{P}=\frac{\mathrm{r}}{100} t+\log 100$
$\Rightarrow \log \mathrm{P}-\log 100=\stackrel{\mathrm{r}}{ } t \Rightarrow \log \stackrel{\mathrm{P}}{\mathrm{r}} t$
$100 \quad 100 \quad 100$
Putting $\mathrm{P}=$ double of itself $=2 \times 100=$ ` 200
When $t=10$ years (given) in (ii),

$$
\begin{aligned}
& \log \frac{200}{100}=\frac{r}{100} \times 10 \quad \Rightarrow \log 2=\frac{r}{10} \\
\Rightarrow & r=10 \log 2=10(0.6931)=6.931 \% \text { (given). }
\end{aligned}
$$

21. In a bank, principal increases at the rate of 5% per year. An amount of 1000 is deposited with this bank, how much will it worth after 10 years ($e^{0.5}=1.648$).
Sol. Let P be the principal (amount) at the end of t years.
According to given rate of increase of principal per year

$$
=5 \%(\text { of the principal })
$$

$\Rightarrow \quad \frac{a P}{a}=\frac{5}{100} \times P \Rightarrow \frac{a P}{\text { at }}=\frac{P}{20}$
$\Rightarrow 20$ at

$$
d \mathrm{P}=\mathrm{P} d t
$$

Separating variables, $\frac{\underline{a} P}{P}=\frac{\text { at }}{20}$
Integrating both sides, we have

$$
\begin{equation*}
\log \mathrm{P}=\frac{1}{20} t+c \tag{i}
\end{equation*}
$$

To find c. Given: Initial principal deposited with the bank is
${ }^{-} 1000$.
\Rightarrow When $t=0, \mathrm{P}=1005$ CUET

Putting $t=0$ and $\mathrm{P}=1000$ in (i), we have $\log 1000=c$
Putting $c=\log 1000$ in (i), $\log \mathrm{P}=\frac{\mathrm{t}}{20}+\log 1000$
$\Rightarrow \log \mathrm{P}-\log 1000=\frac{\mathrm{t}}{20} \quad \Rightarrow \log \frac{\mathrm{P}}{1000}=\frac{\mathrm{t}}{20}$
Putting $t=10$ years (given), we have

$$
\begin{aligned}
& \log \frac{\mathrm{P}}{1000}=\frac{10}{20}=\frac{1}{2}=0.5 \\
& \Rightarrow \quad \underline{\mathrm{P}} \quad=e^{0.5} \\
& \Rightarrow \quad 1000 \quad[\because \\
&\text { If } \left.\log x=t, \text { then } x=e^{t}\right] \\
& \mathrm{P}=1000 e \quad \begin{array}{ll}
0.5 & 0.8
\end{array} \\
&=1000(1.648) \quad\left[\begin{array}{ll}
\left.\left(\frac{1648}{1000}\right)=1.648 \text { (given) }\right]
\end{array}\right.
\end{aligned}
$$

22. In a culture the bacteria count is $1,00,000$. The number is increased by 10% in 2 hours. In how many hours will the count reach $2,00,000$, if the rate of growth of bacteria is proportional to the number present.
Sol. Let x be the bacteria present in the culture at time t hours.
According to given,
Rate of growth of bacteria is proportional to the number present.
i.e., $\frac{\mathrm{az}}{\mathrm{at}}$ is proportional to x.
$\therefore \quad \frac{\mathrm{az}}{\mathrm{at}}=k x$ where k is the constant of proportionality $(k>0$
because rate of growth (i.e., increase) of bacteria is given.)
$\Rightarrow d x=k x d t \quad \Rightarrow \frac{\mathrm{az}}{\mathrm{z}}=k d t$
Integrating both sides, $\int_{\mathrm{z}}^{\frac{1}{2}} d x=k \int 1 d t$

$$
\begin{equation*}
\Rightarrow \quad \log x=k t+c \tag{i}
\end{equation*}
$$

To find \boldsymbol{c}. Given: Initially the bacteria count is x_{0} (say) $=1,00,000$.
\Rightarrow When $t=0, x=x 0$.
Putting these value in (i), $\log x_{0}=c$.
Putting $c=\log x_{0}$ in (i), $\log x=k t+\log x_{0}$
$\Rightarrow \log x-\log x_{0}=k t \quad \Rightarrow \log \frac{\mathbf{Z}}{\mathbf{Z}_{0}}=k t$
To find k : According to given, the number of bacteria is increased by 10% in 2 hours.
\therefore Increase in bacteria in 2 hours $=\frac{10}{100} \times 1,00,000=10,000$
$\therefore \quad x$, the amount of bacteria at $t=2$
$=1,00,000+10,00 \overline{\mathbf{U}}_{\mathbf{1}} \mathbf{1}^{10,000}=x_{1}$ (say)
Putting $x=x_{1}$ and $t=2$ aridademy

$$
\begin{gathered}
\log \frac{\mathrm{z}_{1}}{\mathrm{z}_{0}}=2 k \quad \Rightarrow k=1 \log \frac{\mathrm{z}_{1}}{\mathrm{z}_{0}} \\
\Rightarrow k=\frac{1}{2} \log \frac{1,10,000}{1,00,000}=\mathbf{z}_{\log } \frac{10}{}
\end{gathered}
$$

Putting this value of k in (ii), we have $\log \underline{z}=1^{(\log \underline{11)} t}$ $z_{0} \quad 2{ }^{\prime} \quad 10$ 少

When $x=2,00,000$ (given);
then $\log \frac{2,00,000}{1,00,000}=\left(\frac{1}{2} \log \frac{11}{10}\right) t \quad \Rightarrow \log 2=1 \quad \log \left(\frac{11}{10}\right) t$
Cross-multiplying $2 \log 2=\left(\log \frac{11}{(\mid)} t \Rightarrow t=\frac{2 \log ^{2} 2}{(\underline{11})}\right.$ hours. $\left(\log _{10}\right)$
23. The general solution of the differential
equation $\frac{d y}{d x}=e^{x+y}$ is
(A) $e^{x}+e^{-y}=c$ (B) $e^{x}+e^{y}=c$ (C) $e^{-x}+e^{y}=c$ (D) $e^{-x}+e^{-y}=c$

Sol. The given D.E. is $\frac{\mathrm{ay}}{\mathrm{az}}=e^{x+y}$
$\Rightarrow \quad \underline{\mathrm{ay}} \mathrm{az}=e^{x} \cdot e^{y} \quad \Rightarrow d y=e^{x} \cdot e^{y} d x$

Separating variables, $\frac{\text { ay }}{\left(\mathrm{e}^{y}\right)}=e^{x} d x \quad$ or $\quad e^{-y} d y=e^{x} d x$

Integrating both sides $\int \mathrm{e}^{-y} d y=\int \mathrm{e}^{\mathrm{z}} d x$

$$
\Rightarrow \quad \frac{\mathrm{e}^{-y}}{-1}=e^{x}+c \Rightarrow-e^{-y}-e^{x}=c
$$

Dividing by $-1, e^{-y}+e^{x}=-c$
or $e^{x}+e^{-y}=\mathrm{C}$ where $\mathrm{C}=-c$ which is the required solution.
\therefore Option (A) is the correct answer.

Exercise 9.5

In each of the Exercises 1 to 5, show that the given differential equation is homogeneous and solve each of them:

1. $\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$

Sol. The given D.E. is

$$
\begin{equation*}
\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x \tag{i}
\end{equation*}
$$

This D.E. looks to be homogeneous as degree of each coefficient of $d x$ and $d y$ is same throughout (here 22 .)
From (i), $\frac{a y}{a z}=\frac{z^{2}+y^{2}}{z^{2}+z y}=\frac{z^{2}\left(1+\frac{y^{2}}{z^{2}}\right)}{z^{2}(1+y)}$

$$
z^{l}
$$

or

$$
\begin{equation*}
\left.\frac{\text { ay }}{a z}=\frac{1+\left(\frac{y}{(z}\right)^{2}}{1+\left(\frac{y}{z}\right)}=F \right\rvert\,(z) \tag{ii}
\end{equation*}
$$

\therefore The given D.E. is homogeneous.
Put $\frac{\mathrm{y}}{\mathrm{X}}=v$. Therefore $y=v x$.
$\therefore \quad \frac{\mathrm{ay}}{\mathrm{az}}=v \cdot 1+x \frac{\mathrm{av}}{\mathrm{az}}=v+x \frac{\mathrm{av}}{\mathrm{az}}$
Putting these values of $\frac{y}{z}$ and $\frac{a y}{a z}$ in (ii), we have

$$
v+x \frac{\mathrm{av}}{\mathrm{az}}=\frac{1+\mathrm{v}^{2}}{1+\mathrm{v}}
$$

Transposing v to R.H.S., $x \frac{\mathrm{av}}{\mathrm{az}}=\frac{1+\mathrm{v}^{2}}{1+\mathrm{v}}-v$
$\Rightarrow \quad x \frac{a v}{a z}=\frac{1+v^{2}-v-v^{2}}{1+v}=\frac{1-v}{1+v}$
Cross-multiplying $\quad x(1+v) d v=(1-v) d x$
Separating variables $\frac{1+v}{1-v} d v=\frac{\mathrm{az}}{\mathrm{z}}$
Integrating both sides $\int \frac{1+\mathbf{v}}{1-\mathrm{v}} d v=\int \frac{1}{\mathrm{z}} \mathrm{az}$

$$
\Rightarrow \int \frac{1+1-1+\mathrm{v}}{1-\mathrm{v}} d v=\log x+c \Rightarrow \int \frac{2-(1-\mathrm{v})}{1-\mathrm{v}} d v=\log x+c
$$

$\Rightarrow \int|\underline{1-\mathrm{v}}-1| d v=\log x+c \Rightarrow$
$2 \underline{\log (1-v)}$
$\Rightarrow \int|1-\mathrm{v} \quad| d v=\log x+c \Rightarrow \quad-1 \quad-v=\log x+c$
$\Rightarrow \quad-2 \log (1-v)-v=\log x+c$
Put $v=\underline{y}, \quad-2 \log (1-\underline{y})-\underline{y}=\log x+c$
Dividing by $-1, \quad 2 \log (\underline{(} \underline{z}-\bar{y})^{\mid}+\frac{z}{y}$

$$
\begin{aligned}
& =-\log x-c
\end{aligned}
$$

$$
\begin{aligned}
& (z-y)^{2} \quad{ }_{-}^{y}-c \quad \text { - } \quad \text { y }
\end{aligned}
$$

$\Rightarrow \quad \mathbf{z}=\mathrm{e}^{\mathrm{z}}=\mathrm{Z} \underset{\text { - }}{-}{ }^{-} \boldsymbol{C} \overrightarrow{\mathbf{U}}(x-y)^{2}=\mathrm{C} x \mathrm{e}^{\mathrm{z}}$ where $\mathrm{C}=e^{-c}$ which is the required solution.
2. $\boldsymbol{y}^{\prime}=\frac{x+y}{x}$

Sol. The given differential equation is $y^{\prime}=$

$$
\Rightarrow \frac{a y}{a z}=\frac{\underline{z}}{z}+\frac{\mathbf{y}}{z} \quad \Rightarrow \frac{a y}{a z}=1+\frac{\underline{z}+y}{z}, \frac{\mathbf{y}}{z}=f\left(\frac{\mathbf{y}}{\mathrm{z}}\right)
$$

\therefore Differential equation (i) is homogeneous.

Put $\frac{\mathrm{y}}{\mathrm{z}}=v \quad \therefore \quad y=v x$
$\therefore \quad \frac{\mathrm{ay}}{\mathrm{az}}=v \cdot 1+x \frac{\mathrm{av}}{\mathrm{az}}=v+x \frac{\mathrm{av}}{\mathrm{az}}$
ay
Putting these values of $\frac{a}{\mathrm{az}}$ and y in (i),
$v+x \frac{\mathrm{av}}{\mathrm{az}}=1+v \quad \Rightarrow \quad x \frac{\mathrm{av}}{\mathrm{az}}=1 \quad \Rightarrow x d v=d x$

Separating variables, $\quad d v=\frac{\mathbf{a z}}{\mathbf{z}}$
Integrating both sides, $\int 1 d v=\int \frac{\mathrm{az}}{\mathbf{z}} \quad v=\log |x|+c$

Putting $v=\frac{\mathbf{y}}{\mathbf{z}}, \frac{\mathbf{y}}{\mathbf{z}}=\log |x|+c \quad \therefore \quad y=x \log |x|+c x$
which is the required solution.
3. $(x-y) d y-(x+y) d x=0$

Sol. The given differential equation is

$$
\begin{equation*}
(x-y) d y-(x+y) d x=0 \tag{i}
\end{equation*}
$$

Differential equation (i) looks to be homogeneous because each coefficient of $d x$ and $d y$ is of degree 1 .
From (i), $(x-y) d y=(x+y) d x$

$$
\therefore \frac{a y}{a z}=\frac{z+y}{z-y}=\frac{\binom{z}{y} \quad \text { or } \quad \frac{a y}{a z}=\frac{y}{1-\frac{y}{y}}=f\binom{y}{z}}{z\left(1-\frac{y}{z}\right)}
$$

\therefore Differential equation (i) is homogeneous.
Put $\frac{y}{z}=v \quad \therefore y=v x$
$\therefore \frac{\mathrm{ay}}{\mathrm{az}}=v \cdot 1+x \frac{\mathrm{av}}{\mathrm{az}}=v+x \frac{\mathrm{av}}{\mathrm{az}}$
Putting these values in (ii), $v+x \frac{a v}{a z}=\frac{1+v}{1-v}$

Shifting v to R.H.S., $x \frac{\mathrm{av}}{\mathrm{az}}=\frac{1+\mathrm{v}}{1-\mathrm{v}}-v=\frac{1+\mathrm{v}-\mathrm{v}+\mathrm{v}^{2}}{1-\mathrm{v}}$
av $\quad \Rightarrow \quad x$ OFSACT Ademy

Cross-multiplying, $\quad x(1-v) d v=\left(1+v^{2}\right) d x$
Separating variables, $\quad \frac{(1-\mathrm{v})}{1+\mathrm{v}^{2}} d v=\frac{\mathrm{az}}{\mathrm{z}}$
Integrating both sides, $\int \frac{1-\mathrm{v}}{1+\mathrm{v}^{2}} d v=\int_{\mathrm{z}}^{\frac{1}{\mathrm{z}}} d x+c$
$\Rightarrow \int \frac{1}{1+\mathrm{v}^{2}} d v-\int \underline{1+\mathrm{v}^{2}{ }^{2}} d v=\int_{\mathrm{z}}^{\frac{1}{2}} d x+c$
$\Rightarrow \tan ^{-1} v-\frac{1}{2} \int \frac{2 \mathrm{v}}{1+\mathrm{v}^{2}} d v=\log x+c$
$\Rightarrow \tan ^{-1} v-\frac{1}{2} \log \left(1+v^{2}\right)=\log x+c \quad\left\lceil\left.\because \int \frac{\mathrm{f}^{\prime}(\mathrm{v})}{\mathrm{f}(\mathrm{v})} \mathrm{av}=\log \mathrm{f}(\mathrm{v}) \right\rvert\,\right.$

$\Rightarrow \quad \tan -1 \frac{y}{z}-\frac{1}{2} \log \left(\underline{z^{2}+z^{2} y^{2}}\right)=\log x+c$
$\Rightarrow \quad \tan ^{-1} \frac{y}{z}-\frac{1}{2}\left[\log \left(x^{2}+y^{2}\right)-\log x^{2}\right]=\log x+c$
$\Rightarrow \tan ^{-1} \frac{y}{z_{-}} \frac{1}{2} \log \left(x^{2}+y^{2}\right)+\frac{1}{2} 2 \log x=\log x+c$
$\Rightarrow \tan ^{-1} \frac{y}{z}-\frac{1}{2} \log \left(x^{2}+y^{2}\right)=c \Rightarrow \tan ^{-1} \frac{y}{z}=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+c$ which is the required solution.
4. $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$

Sol. The given differential equation is

$$
\begin{equation*}
\left(x^{2}-y^{2}\right) d x+2 x y d y=0 \tag{i}
\end{equation*}
$$

This differential equation looks to be homogeneous because degree of each coefficient of $d x$ and $d y$ is same (here 2).
From (i), 2xy dy $=-\left(x^{2}-y^{2}\right) d x$

$$
\Rightarrow \quad \frac{a y}{a z}=\frac{-\left(z^{2}-y^{2}\right)}{2 z y}=\frac{y^{2}-z^{2}}{2 z y}
$$

Dividing every term in the numerator and denominator of R.H.S. by x^{2},

$$
\begin{equation*}
\frac{a y}{a z}=\frac{(\bar{y})^{2}}{2 \frac{y}{z}}=f \varphi^{(\bar{z}) \mid} \tag{ii}
\end{equation*}
$$

\therefore The given differential equation is homogeneous.
Put $\frac{\mathrm{y}}{\mathrm{z}}=v$. Therefore $y=v x \therefore \quad \frac{\mathrm{ay}}{\mathrm{az}}=v .1+x \frac{\mathrm{av}}{\mathrm{az}}=v+x \frac{\mathrm{av}}{\mathrm{az}}$

Putting these values of $\quad z$ and $a z$ in differential equation (ii), we have

$$
\begin{aligned}
& v+x \frac{\mathrm{av}}{\mathrm{az}}=\frac{\mathrm{v}^{2}-1}{2 \mathrm{v}} \quad \Rightarrow \quad x \frac{\mathrm{av}}{\mathrm{az}}=\frac{\mathrm{v}^{2}-1}{2 \mathrm{v}}-v=\begin{array}{c}
\mathrm{v}^{2}-1-2 \mathrm{v}^{2} \\
2 \mathrm{v}
\end{array} \\
& \Rightarrow \quad x \frac{\mathrm{av}}{\mathrm{az}}=\frac{-\mathrm{v}^{2}-1}{2 \mathrm{v}}=-\frac{\left(\mathrm{v}^{2}+1\right)}{2 \mathrm{v}} \quad \therefore \times 2 v d v=-\left(v^{2}+1\right) d x
\end{aligned}
$$

$\Rightarrow \quad \frac{2 v a v}{v^{2}+1}=-\frac{a z}{z}$
Integrating both sides, $\int \frac{2 \mathrm{v}}{\mathrm{v}^{2}+1} d v=-\int_{\mathrm{z}}^{\underline{1}} d x$
$\Rightarrow \quad \log \left(v^{2}+1\right)=-\log x+\log c$
$\Rightarrow \log \left(v^{2}+1\right)+\log x=\log c$
$\Rightarrow \quad \log \left(v^{2}+1\right) x=\log c$
$\Rightarrow \quad\left(v^{2}+1\right) x=c$
Put $v=\begin{aligned} & \mathbf{y}\left(\frac{\mathrm{y}^{2}}{z^{2}}+1\right) \quad\left(x=c \quad \text { or } \quad\left(\mathrm{y}^{2}+\mathrm{z}^{2}\right)\right. \\ & \left.\mathrm{z}^{2}\right) \\ &)\end{aligned}$
or $\quad \frac{\mathrm{y}^{2}+\mathrm{z}^{2}}{\mathbf{z}}=c \quad$ or $\quad x^{2}+y^{2}=c x$
which is the required solution.
5. $x^{2}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)=x^{2}-2 y^{2}+x y$

Sol. The given differential equation is $x^{2} \frac{a y}{a z}=x^{2}-2 y^{2}+x y$

The given differential equation looks to be Homogeneous as all terms in x and y are of same degree (here 2).

Dividing by x^{2},

$$
\begin{aligned}
& \frac{a y}{a z}=\frac{z^{2}}{z^{2}}-\frac{2 y^{2}}{z^{2}}+\frac{z y}{z^{2}} \\
& \text { ay }
\end{aligned}
$$

or

$$
\begin{align*}
a z & =1-2 \mid(z+\mid(z)) \tag{i}\\
& =F\left(\frac{y}{z}\right)
\end{align*}
$$

\therefore Differential equation (i) is homogeneous.
So put $\frac{\mathrm{y}}{\mathrm{z}}=v$
$\therefore y=v x$
$\therefore \quad \frac{\mathrm{ay}}{\mathrm{az}}=v \cdot 1+x \frac{\mathrm{av}}{\mathrm{az}}=v+x \frac{\mathrm{av}}{\mathrm{az}}$

Putting these values of CUEAy
adadazniy (i),

Separating variables, $1-2 v^{2}=z$

Integrating both sides, \int

$$
d v=\int_{\mathrm{z}}^{\frac{1}{1}} d x
$$

$$
\begin{gathered}
\log \left\lvert\, \frac{\sqrt{1+\sqrt{2} v}}{} \frac{1}{1^{2}-(\sqrt{2} \mathrm{v})^{2}}\right. \\
\Rightarrow \quad \frac{1}{2} 1 \frac{1-2 \mathrm{v} \mid}{\sqrt{2} \rightarrow \text { Coefficient of } \mathrm{v}}=\log |x|+c
\end{gathered}
$$

$$
\left[\begin{array}{l}
{\left[\because \int \frac{1}{a^{2}-z^{2}} a z=\frac{1}{2} a \log \left|\begin{array}{l}
a+z \\
a-z
\end{array}\right|\right.} \\
\lfloor
\end{array}\right.
$$

Putting $v=\frac{\mathbf{y}}{\mathbf{z}}, \quad \frac{1}{2 \sqrt{2}} \log \left|\frac{1+\sqrt{2} \frac{y}{z}}{1-\sqrt{2} \frac{y}{z}}\right|=\log |x|+c$
Multiplying within logs by x in L.H.S.,

$$
\frac{1}{2 \sqrt{2}} \log \left|\frac{z+\sqrt{2} y}{z-2 \sqrt{y}}\right|=\log |x|+c
$$

In each of the Exercises 6 to 10, show that the given D.E. is homogeneous and solve each of them:
6. $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$

Sol. The given differential equation is
$x d y-y d x=\sqrt{\mathrm{z}^{2}+\mathrm{y}^{2}} d x$ or $x d y=y d x+\sqrt{\mathrm{z}^{2}+\mathrm{y}^{2}} \cdot d x$
Dividing by $d x$
\therefore Given differential equation is homogeneous.
Put $\frac{\mathrm{y}}{\mathrm{z}}=v$ i.e., $y=v x$.
Differentiating w.r.t. $x, \frac{a y}{a z}=v+x \frac{a v}{a z}$
Putting these values of $\frac{y}{z}$ and $\frac{a y}{a z}$ in (i), it becomes av
av
$\sqrt{5 \text { Academy }}$
$\sqrt{1+\mathrm{v}^{2}}$

$$
\begin{array}{rlrl}
& v+x \overline{\mathrm{az}}=v+ & \text { or } \quad x \mathrm{az}= \\
\therefore & x d v= & \sqrt{1+\mathrm{v}^{2}} & \\
\therefore & & \text { or } & \frac{\mathrm{av}}{\sqrt{1+\mathrm{v}^{2}}}=\frac{\mathrm{az}}{\mathrm{z}}
\end{array}
$$

Integrating both sides, $\int \frac{a v}{\sqrt{1+v^{2}}}=\int \frac{a z}{z}$
$\therefore \quad \log \left(v+\sqrt{1+\mathrm{v}^{2}}\right)=\log x+\log c$
Replacing v by $\frac{y}{z}$, we have

$$
\left.\left.\left.\log \right|_{\left(\bar{z}^{+}\right.} \sqrt{\mathrm{y}} \sqrt{1+\frac{\mathrm{y}^{2}}{\mathrm{z}^{2}}}\right|^{2}\right)=\log c x \quad \text { or } \quad \frac{\mathrm{y}+\sqrt{\mathrm{z}^{2}+\mathrm{y}^{2}}}{}=c x
$$

or

$$
y+\sqrt{\mathrm{z}^{2}+\mathrm{y}^{2}}=c x^{2}
$$

which is the required solution.
$f_{x \cos (y)}^{(y \sin (y)) \quad(y \sin (y)-x \cos (y))}$
7.

Sol. The given D.E. is
$\left.f_{z \cos }(y)+y \sin (y)\right) \quad(y \sin (y)-z \cos (y))$
$\left\{(\mathbf{z}) \quad(\mathbf{z})^{\}} y d x=\left\{\quad(\mathbf{z}) \quad(\mathbf{z})^{\}} x d y\right.\right.$
$(z \cos y+y \sin -y) y^{\prime} \quad z y \cos ^{y}+y^{2} \sin -\frac{y}{y}$
\therefore ay
z

$$
a z=\left(\frac{y \sin ^{y}}{y}-z \cos ^{y}\right)_{z}=z y \sin ^{y}-z^{2} \cos ^{y}
$$

Z
z)
z
z
Dividing every term in R.H.S. by x^{2},

$$
\begin{equation*}
\frac{a y}{a z}=\frac{\frac{y}{z} \cos \frac{y}{z}+\left(\frac{y}{(z)}(z)^{2} \sin z\right.}{y} z_{z \sin ^{y}-\cos ^{y}}^{z}=F\left(\left.\frac{y)}{z} \right\rvert\,\right) \tag{i}
\end{equation*}
$$

\therefore The given differential equation is homogeneous.
So let us put $\frac{y}{x}=v$. Therefore $y=v x$.
$\therefore \quad \frac{\mathrm{ay}}{\mathrm{az}}=v .1+x \frac{\mathrm{av}}{\mathrm{az}}=v+x \frac{\mathrm{av}}{\mathrm{az}}$
Putting these values in differential equation (i), we have
$v+x \frac{a v}{a z}=\frac{v \cos v+v^{2} \sin v}{v \sin v-\cos v} \Rightarrow x \frac{a v}{a z}=\frac{v \cos v+v^{2} \sin v}{v \sin v-\cos v}-v$

$\Rightarrow \quad x^{\text {avaz }}$
2
v
C
o
V
v
S
i
n
v
-
C
0
S
v

Cross-multiplying, $x(v \sin v-\cos v) d v=2 v \cos v d x$
Separating variables, $\frac{v \sin v-\cos v}{v \cos v} d v=2 \frac{\mathrm{az}}{\mathrm{z}}$
Integrating both sides, $\int \frac{v \sin v-\cos v}{v \cos v} d v=2 \int_{z}^{\frac{1}{z}} d x$
1
Using $\frac{\mathrm{a}-\mathrm{b}}{\mathrm{c}}=\frac{\underline{\mathrm{a}}}{\mathrm{c}}-\frac{\underline{\mathrm{b}}}{\mathrm{c}}, \Rightarrow \int\left(\frac{\mathrm{v} \sin \mathrm{v}}{\mathrm{v} \cos \mathrm{v}}-\frac{\cos \mathrm{v}}{\mathrm{v}}\right), d v=2 \int_{\mathrm{z}} d x$
$\Rightarrow \quad \int(\tan \mathrm{v}-\underline{1}) d v=2 \int \underline{1}^{\underline{1}} d x$

$$
\begin{array}{ll}
& \text { (} \mathbf{v}^{\prime} \text { z } \\
\Rightarrow \log |\sec v|-\log |v|=2 \log |x|+\log |c| \\
\Rightarrow & \log \left|\frac{\sec v}{\mathrm{v}}\right|=\log |x|^{2}+\log |c| \quad=\log \left(|c| x^{2}\right)
\end{array}
$$

$$
\Rightarrow\left|\frac{\sec \mathrm{v}}{\mathrm{v}}\right|_{=}|c| x^{2} \quad \Rightarrow \frac{\sec \mathrm{v}}{\mathrm{v}}= \pm|c| x^{2}
$$

$$
\Rightarrow \quad \sec v= \pm|c| x^{2} v
$$

$$
\text { Putting } v=\mathbb{y}, \sec \underline{y}=\mathrm{Cx}^{2} \underline{\mathrm{y}} \text { where } \mathrm{C}= \pm|c|
$$

$$
\Rightarrow C x y \cos \frac{y}{z}=1 \quad \Rightarrow x y \cos \frac{y}{z}=\frac{1}{C}=C_{1} \text { (say) }
$$

which is the required solution.
8. $x \frac{d y}{d x}-y+x \sin \binom{y}{x}=0$

Sol. The given D.E. is $x \frac{a y}{a z}-y+x \sin \binom{y}{z}=0$
or $\quad x \frac{a y}{a z}=y-x \sin \binom{y}{z}$
Dividing every term by $x, \frac{a y}{a z}=\frac{y}{z}-\sin \binom{y}{z}=\left.F^{\dagger} \underline{y}\right|_{\mid \ldots(i)}$
(z)

Since $\left.\frac{\underline{a y}}{a z}=F \right\rvert\,(\underline{y})$, the given differential equation is homogeneous.

in (i), we have

$$
\begin{aligned}
& \quad v+x \frac{\mathrm{av}}{\mathrm{az}}=v-\sin v \\
& \text { or } x \frac{\mathrm{av}}{\mathrm{az}}=-\sin v \quad \therefore \quad x d v=-\sin v d x \\
& \text { or } \quad \frac{\mathrm{av}}{\sin v}=\frac{-\mathrm{az}}{\mathrm{z}} \quad \text { or } \operatorname{cosec} v d v=-\frac{\mathrm{az}}{\mathrm{z}} \\
& \text { Integrating, } \log |\operatorname{cosec} v-\cot v|=-\log |x|+\log |c| \\
& \text { or } \log |\operatorname{cosec} v-\cot v|=\log \left|\frac{\mathrm{c}}{\mathrm{z}}\right|
\end{aligned}
$$

or $\operatorname{cosec} v-\cot v= \pm \frac{\mathrm{C}}{\mathrm{Z}}$
Replacing v by $\stackrel{\mathcal{Y}}{ }, \operatorname{cosec}{ }^{\mathcal{Y}}-\cot \underline{\mathcal{Y}}=\underline{\mathrm{C}}$ where $\mathrm{C}= \pm c$
$\Rightarrow \frac{1}{\sin \frac{y}{y}-\frac{\cos \frac{y}{z}}{\sin } \frac{\mathrm{C}}{\mathrm{z}}}=\frac{\mathrm{C}}{\mathrm{z}} \Rightarrow \frac{1-\cos \frac{y}{z}}{\sin \frac{y}{z}}=\frac{C}{z}$
Cross-multiplying $x(1-\cos -\mathcal{y})=C \sin y$ which is the required
Cross-multiplying, x
solution.
$z y \quad z$
9. $y d x+x \log \binom{\frac{y}{x}}{x} d y-2 x d y=0$

Sol. The given differential equation is $y d x+x^{(\log -y)} d y$

Since $\left.\frac{\underline{a y}}{a z}=F \right\rvert\,(\underline{y})$, the given differential equation is homogeneous.
y ay av

Putting $\overline{\mathrm{z}}=v$ i.e., $y=v x$ so that $\overline{\mathrm{az}}=v+x \overline{\mathrm{az}}$

Putting these values of $\frac{y}{z}$ and $\frac{a y}{a z}$ in (i), we have

$$
\begin{gathered}
v+x \frac{\mathrm{av}}{\mathrm{az}}=\frac{\mathrm{v}}{2-\log v} \\
\text { or } x \frac{\mathrm{av}}{\mathrm{az}}=\frac{v}{2-\log v}-v=\frac{v-2 v+v \log v}{2-\log v}==\frac{v+v \log v}{2-\log v}
\end{gathered}
$$

$\therefore \quad x(2-\log v) d v=v(\log v-1) d x$
or $\quad \frac{2-\log v}{v(\log v-1)} d v=\frac{\mathrm{az}}{\mathrm{z}} \quad$ or $\quad \frac{1-(\log v-1)}{\mathrm{v}(\log v-1)} d v=\frac{\mathrm{az}}{\mathrm{z}}$
or $\quad\left\lceil\left.\frac{1}{\mathrm{v}(\log \mathrm{v}-1)}-\frac{1}{\mathrm{v}} \right\rvert\, d v=\frac{\mathrm{az}}{\mathrm{z}}\right.$

Integrating $\left.\int \frac{1 / \mathrm{v}}{}{ }^{\Gamma}{ }^{1}\right\rceil_{d v} d v=\log |x|+\log |c|$

or $\quad \log \left|\frac{\log \mathrm{v}-1}{\mathrm{v}}\right|=\log |c x| \quad$ or $\quad\left|\frac{\log \mathrm{v}-1}{\mathrm{v}}\right|=|c x|$
or $\quad \frac{\log v-1}{v}= \pm c x=\mathrm{C} x$ where $\mathrm{C}= \pm c$
or $\quad \log v-1=\mathrm{C} x v$
Replacing v by $\frac{y}{z}$, we have

$$
\log \frac{y}{z}-1=C x\left(\frac{y}{(z}\right) \quad \text { or } \quad \log \frac{y}{z}-1=C y
$$

which is a primitive (solution) of the given differential equation.
Second solution
The given D.E. is $y d x+x \log \left(\frac{y}{x}\right)_{j} d y-2 x d y=0$

Dividing every term by $d y$,

$$
\begin{gathered}
y \frac{d x}{x} \quad \underline{x} \quad x=0\left\lceil\log ^{\underline{y}}=\log y-\log x=-(\log x-\log y)=-\log \underline{x}\right\rceil \\
d y \quad \log y-2 \quad\left[\begin{array}{l}
\because
\end{array}\right]
\end{gathered}
$$

Dividing every term by y,

$$
\begin{aligned}
& \frac{d x}{d y}-\frac{x}{y} \log \frac{x}{y}-2 \frac{x}{y}=0 \\
& \Rightarrow \underline{d x} \underline{x} \quad \underline{x} \quad \underline{x} \quad(=\mathrm{F}(x)) \\
& \left.\Rightarrow d y=y \log _{y}+2 y^{-} \quad \cdots(i)\binom{-1}{y}\right)
\end{aligned}
$$

\therefore The given differential is homogeneous.
Put $\frac{x}{y}=v$ i.e. $x=v y$
so that $\frac{d x}{d y}=v+y \frac{d y \text { CUET }}{d y}$ Academy

Putting these values in D. E. (i), we have
$v+y \frac{d v}{d y}=v \log v+2 v$
$\Rightarrow y \frac{d v}{d y}=v \log v+v=v(\log v+1)$
Cross-multiplying $y d v=v(\log v+1) d y$

Separating variables $\frac{d v}{v(\log v+1)}=\frac{d y}{y}$
Integrating both sides $\int \frac{1}{-} d v=\int \frac{1}{v} d y$

$\therefore \log v+1= \pm c y=\mathrm{C} y$ where $\left.\mathrm{C}= \pm c^{\lfloor\because} f_{(v)}{ }^{d} \quad\right\rfloor$
Replacing v by \bar{y}, we have
$\log \frac{x}{y}+1=\mathrm{C} y$
or $-\log \underline{y}+1=\mathrm{C} y \quad\lceil\quad \underline{x}=\quad \underline{y}$
x
Dividing by $-1, \log \frac{y}{x}-1=-\mathrm{C} y$ or $=\mathrm{C}_{1} y$ which is a primitive (solution) of the given D.E.
$\sin _{x / y}^{x / y}(1-\underline{x})$
10. $(1+e) d x+e \quad|\quad y| d y=0$

Sol. The given differential equation is $\left(1+e^{x / y}\right) d x+e^{x / y}(1-\underline{z})$

$$
x / y \quad \underline{a z} \quad x / y(1-\underline{z})
$$

Dividing by $d y,(1+e)$ ay $+e \quad|\quad y|=0$
or $\left(1+e^{x / y}\right)$ ay $=-e^{x / y}(1-\underline{z}) \quad$ y \quad y \quad or $\quad \underline{a y}=\frac{e^{z / y}\left(\frac{z}{y}-1\right)}{\left.1+e^{z / y}\right)}$
which is a differential equation of the form $\frac{\mathrm{az}}{\mathrm{ay}}=f\left(\frac{z}{\mathbf{y}}\right)$.
\therefore The given differential equation is homogeneous.

Differentiating w.r.t. $y, \quad \frac{\mathrm{az}}{\mathrm{ay}}=v+y \frac{\mathrm{av}}{\mathrm{ay}}$
Putting these values of $\frac{z}{y}$ and $\frac{a z}{a y}$ in (i), we have

$$
v+y \frac{\mathrm{av}}{\mathrm{ay}}=\frac{\mathrm{e}^{\mathrm{v}}(\mathrm{v}-1)}{1+\mathrm{e}^{\mathrm{v}}}
$$

Now transposing v to R.H.S.

$\therefore \quad y\left(1+e^{v}\right) d v=-\left(e^{v}+v\right) d y \quad$ or $\quad \mathrm{v}+\mathrm{e}^{v d v=-\mathrm{y}}$
Integrating, $\log \left|\left(v+e^{v}\right)\right|=-\log |y|+\log |c|$
Replacing v by $\frac{z}{\mathbf{y}}$, we have

$$
\begin{aligned}
& \log \left|\left(\frac{z}{y}+e^{z / y}\right)\right|=\log \left|\frac{c}{y}\right| \text { or }\left|\frac{z}{y}+e^{z / y}\right|=\left|\frac{\mathbf{c}}{y}\right| \\
& \therefore \quad \underline{\mathbf{z}}+e^{x / y}= \pm \underline{C} \\
& \text { y }
\end{aligned}
$$

Multiplying every term by y,

$$
x+y e^{x / y}=\mathrm{C} \text { where } \mathrm{C}= \pm c
$$

which is the required general solution.
For each of the differential equations in Exercises from 11 to 15, find the particular solution satisfying the given condition:
11. $(x+y) d y+(x-y) d x=0 ; y=1$ when $x=1$ Sol.

The given differential equation is

$$
\begin{equation*}
(x+y) d y+(x-y) d x=0, y=1 \text { when } x=1 \tag{i}
\end{equation*}
$$

It looks to be a homogeneous differential equation because each coefficient of $d x$ and $d y$ is of same degree (here 1).
From $(i),(x+y) d y=-(x-y) d x$
$\therefore \quad \frac{a y}{a z}=\frac{-(z-y)}{z+y}=\frac{y-z}{y+z}=\frac{\left(\frac{z}{(z)}-1\right)}{(y)}$

$$
z\left(z^{+1}\right)
$$

or $\quad \frac{a y}{a z}=\frac{\frac{y}{z}-1}{\frac{y}{z}+1}=f\left(\frac{y}{(z)}\right)$
\therefore Given differential equation is homogeneous.
Put $\frac{\mathrm{y}}{\mathrm{z}}=v$. Therefore
$\overline{\mathrm{ay}}$

$$
\overline{\mathrm{az}}=v+x \overline{\mathrm{az}}
$$

Putting these values in eqn. (ii), $\quad v+x \frac{a v}{a z}=\frac{v-1}{v+1}$
$\Rightarrow \quad x \frac{\mathrm{av}}{\mathrm{az}}=\frac{\mathrm{v}-1}{\mathrm{v}+1}-v=\frac{\mathrm{v}-1-\mathrm{v}(\mathrm{v}+1)}{\mathrm{v}+1}=\frac{\mathrm{v}-1-\mathrm{v}^{2}-\mathrm{v}}{\mathrm{v}+1}=\frac{-\mathrm{v}^{2}-1}{\mathrm{v}+1}$
$\Rightarrow \quad x \frac{\mathrm{av}}{\mathrm{az}}=-\frac{\left(\mathrm{v}^{2}+1\right)}{\mathrm{v}+1} \quad \therefore \quad x(v+1) d v=-\left(v^{2}+1\right) d x$

$$
v+1 \quad a z
$$

Separating variables, $v^{2}+1 d v=-\quad z$
$\therefore \quad \int \frac{\mathrm{v}}{\mathrm{v}^{2}+1} d v+\int \frac{1}{\mathrm{v}^{2}+1} d v=-\int_{\mathrm{z}}^{\frac{1}{\mathrm{z}}} d x$
$\Rightarrow \quad \frac{1}{2} \int \frac{2 \mathrm{v}}{\mathrm{v}^{2}+1} d v+\tan ^{-1} v=-\log x+c$

Putting $\left.v=z^{y}, 2^{\log } \left\lvert\, \begin{array}{lll}z^{2}\end{array}\right.\right)+\tan \quad z^{2}=-\log x+c$ $1 \quad\left(y^{2}+z^{2}\right) \quad-1 y$
$\Rightarrow \quad 2^{\log \mid z^{2}} \mid+\tan \quad z=-\log x+c$
$\Rightarrow \quad \frac{1}{2}\left[\log \left(x^{2}+y^{2}\right)-\log x^{2}\right]+\tan ^{-1} \frac{\mathrm{y}}{\mathrm{z}}=-\log x+c$
$\Rightarrow \frac{1}{2} \log \left(x^{2}+y^{2}\right)-\frac{1}{2} 2 \log x+\tan ^{-1} y=-\log x+c$
$\Rightarrow \quad \frac{1}{2} \log \left(x^{2}+y^{2}\right)+\tan ^{-1} \frac{y}{z}=c$
To find c : Given: $y=1$ when $x=1$.
Putting $x=1$ and $y=1$ in (iii), $\frac{1}{2} \log 2+\tan ^{-1} 1=c$ or $\quad c=\stackrel{1}{ } \log 2+\underline{\pi} \quad\left(\because \tan \frac{\pi}{2}=1 \Rightarrow \tan ^{-1} 1=\frac{\pi}{\pi}\right)$

Putting this value of c in (iii),

Multiplying by 2,

$$
\log \left(x^{2}+y^{2}\right)+2 \tan ^{-1} \frac{y}{z}=\log 2+\frac{\pi}{2}
$$

which is the required particular solution.
12. $x^{2} d y+\left(x y+y^{2}\right) d x=0 ; y=1$ when $x=1$

Sol. The given differential equation is

$$
\begin{aligned}
& \therefore \quad a z=-z^{2}=-\frac{\mid\left(z^{\prime}\right)}{z^{2}}
\end{aligned}
$$

or $\quad \underline{a y}=-\frac{y}{a z}\left(1+\frac{y}{y}\right)=F \begin{aligned} & (\underline{y}) \\ & (z)\end{aligned}$
$\therefore \quad \mathrm{The}$ given $\mathrm{z}_{\text {differential equation is homogeneous. }}$
Put $\begin{aligned} & \mathrm{Y} \\ & \mathrm{z}\end{aligned}=v$, i.e., $y=v x$

Differentiating w.r.t. $x, \frac{a y}{a z}=v+x \frac{a v}{a z}$
Putting these values of $\frac{y}{z}$ and $\frac{\text { ay }}{}$ in differential equation (i),
az
we have $v+x \frac{a v}{a z}=-v(1+v)=-v-v^{2}$
Transposing v to R.H.S., $x \frac{\mathrm{av}}{\mathrm{az}}=-v^{2}-2 v$
or $x \frac{\mathrm{av}}{\mathrm{az}}=-v(v+2) \quad x d v=-v(v+2) d x$
or $\frac{a v}{v(v+2)}=-\frac{a z}{z}$
Integrating both sides, $\int \frac{1}{v(v+2)} d v=-\int \frac{1}{z} d x$
or $\frac{1}{\int} \frac{2}{2} d v=-\log |x|$ or $\frac{1}{2} \int \frac{(\mathrm{v}+2)-\mathrm{v}+2)}{\mathrm{v}(\mathrm{v}+2)}$
Separating terms
or $\left.\quad \int\left(\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{v}+2}\right)|d v=-2 \log | x \right\rvert\,$
or $\log |v|-\log |v+2|=\log x^{-2}+\log |c|$
or

$$
\log \left|\frac{\mathrm{v}}{\mathrm{v}+2}\right|=\log \left|c x^{-2}\right|
$$

$\therefore\left|\frac{\mathrm{v}}{\mathrm{v}+2}\right|=\left|\frac{\mathrm{c}}{\mathrm{z}^{2}}\right|$
$\therefore \quad \frac{v}{v+2}= \pm \frac{c}{z^{2}}$
Replacing v to $\frac{-y}{z}$, we have
or $\frac{y}{y+2 z}= \pm \frac{c}{z^{2}}$

> or $\quad x^{2} y=\mathrm{C}(y+2 x)$ where $\mathrm{C}= \pm c$ To find \mathbf{C}

Put $x=1$ and $y=1$ (given) in eqn. (ii), $1=3 \mathrm{C} \therefore \mathrm{C}=\frac{1}{3}$
Putting $C=\frac{1}{3}$ in eqn. (ii), required particular solution is

$$
x^{2} y=\frac{1}{3}(y+2 x) \text { or } 3 x^{2} y=y+2 x
$$

13. ${ }^{〔} \mathrm{x} \sin ^{2}(\underline{y})-\mathrm{y}{ }^{7} d x+x d y=0 ; y=\underline{\pi}$ when $x=1$

Sol. The given differential equation is

$$
\left(\begin{array}{l}
\mathrm{l} \\
\mathrm{l}
\end{array}\right.
$$

$$
\text { Dividing by } d x, x \frac{\underline{a y}}{\text { az }}=-x \sin ^{2} \underline{y}+y
$$

$$
\begin{equation*}
\text { Dividing by } x, \quad \underline{a y}=-\sin ^{2} \frac{y}{z}+\frac{y}{z} \tag{i}
\end{equation*}
$$

\therefore The given differential equation is homogeneous.
Put $\frac{y}{\mathrm{x}}=v \quad \therefore \quad y=v x \quad \therefore \quad \frac{\mathrm{ay}}{\mathrm{az}}=v .1+x \frac{\mathrm{av}}{\mathrm{az}}=v+x \frac{\mathrm{av}}{\mathrm{az}}$
Putting these values in differential equation (i), we have

$$
\begin{array}{rlrl}
& v+x \frac{\mathrm{av}}{\mathrm{az}} & =-\sin ^{2} v+v \Rightarrow \quad x \frac{\mathrm{av}}{\mathrm{az}}=-\sin ^{2} v \\
\Rightarrow \quad x d v & =-\sin ^{2} v d x
\end{array}
$$

Separating variables, $\frac{a v}{\sin ^{2} v}=-\frac{a z}{z}$
Integrating, $\quad \int \operatorname{cosec}^{2} v a v=-\int_{z}^{\frac{1}{z}} d x$
$\Rightarrow \quad-\cot v=-\log |x|+c$
Dividing by -1 , $\cot v=\log |x|-c$
Putting $v=\frac{y}{z}, \quad \cot \frac{y}{z}=\log |x|-c$

To find $c: y=4$ when $x=1$ (given)

$$
\begin{aligned}
& \mathrm{z} \sin ^{2-\underline{y}}-\mathrm{y} \quad d x+x d y=0 ; y=\underline{\pi}, x=1 \\
& \Rightarrow \quad{ }^{\mid} d y=-\quad z\left(\sin ^{2}-\mathrm{y}-\mathrm{y}\right) d x \quad 4
\end{aligned}
$$

$$
\underline{\pi}=\log 1-c
$$

in (ii), $\cot 4$
or $1=0-c$ or $c=-1$
Putting $c=-1$ in (ii), required particular solution is

$$
\cot \frac{\mathrm{y}}{\mathrm{z}}=\log |x|+1=\log |x|+\log e=\log |e x|
$$

14. $\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\lfloor\underline{\lfloor } \mid=0 ; y=0$ when $x=1$

$$
(x)
$$

Sol. The given differential equation is

$$
\frac{a y}{a z}-\frac{y}{z}+\operatorname{cosec} \frac{y}{z}=0 ; y=0 \text { when } x=1
$$

or $\quad \frac{a y}{a z}=\frac{y}{z}-\operatorname{cosec} \frac{y}{z}=f\binom{y}{z}$
\therefore Given differential equation (i) is homogeneous.
Put $\frac{\mathrm{y}}{\mathrm{z}}=v \quad \therefore y=v x \quad \therefore \quad \frac{\mathrm{ay}}{\mathrm{az}}=v .1+x \frac{\mathrm{av}}{\mathrm{az}}$
Putting these values in differential equation (i),

$$
v+x \frac{\underline{a v}}{\mathrm{az}}=v-\operatorname{cosec} v \Rightarrow x \frac{\underline{a v}}{\mathrm{az}}=\frac{-1}{\sin v}
$$

$\therefore \quad x \sin v d v=-d x$
$\begin{array}{ll}\text { Separating variables, } & \sin v d v=-\frac{a z}{z} \\ \text { Integrating both sides, } & \int \sin v a v=-\int \frac{1}{z} d x\end{array}$

$$
-\cos v=-\log |x|+c
$$

Dividing by -1 , $\cos v=\log |x|-c$
Putting $\quad v=\frac{\mathrm{y}}{\mathrm{z}}, \quad \cos \frac{\mathrm{y}}{\mathrm{z}}=\log |x|-c$
To find c : Given: $y=0$ when $x=1$
\therefore From (ii), $\cos 0=\log 1-c \quad$ or $1=0-c=-c$
$\therefore \quad c=-1$
Putting $\quad c=-1$ in (ii), $\cos \frac{\mathrm{y}}{\mathrm{z}}=\log |x|+1=\log |x|+\log e$
$\Rightarrow \cos \frac{\mathrm{y}}{\mathbf{z}}=\log |e x|$ which is the required particular solution.
15. $2 x y+y^{2}-2 x^{2} \frac{\mathrm{dy}}{\mathrm{dx}}=0 ; y=2$ when $x=1$

Sol. The given differential equation is

$$
\begin{equation*}
2 x y+y^{2}-2 x^{2} \frac{a y}{a z}=0 ; y=2 \text { when } x=1 \tag{i}
\end{equation*}
$$

The given differential equation looks to be homogeneous because each coefficient of $d x$ and $d y$ is of same degree (2 here).

$$
\begin{align*}
& 2 \text { ay } \quad 2 \quad \text { ay } \quad-2 z y \quad y^{2} \\
& \text { From (i), }-2 x \quad \text { az }=-2 x y-y \quad \therefore \quad a z=-2 z^{2}-2 z^{2} \\
& \text { or } \tag{ii}
\end{align*}
$$

\therefore The given differential equation is homogeneous.
Put $\frac{\mathrm{y}}{\mathrm{z}}=v \quad \therefore \quad y=v x \quad \therefore \quad \frac{\mathrm{ay}}{\mathrm{az}}=v .1+x \frac{\mathrm{av}}{\mathrm{az}}=v+x \frac{\mathrm{a} v}{\mathrm{az}}$
Putting these values in differential equation (ii), we have

$$
v+x \frac{\mathrm{av}}{\mathrm{az}}=v+\frac{1}{2} v^{2} \Rightarrow x \frac{\mathrm{av}}{\mathrm{az}}=\frac{1}{2} v^{2} \Rightarrow 2 x d v=v^{2} d x
$$

Separating variables,
$2 \frac{a v}{v^{2}}=\frac{a z}{z}$

Integrating both sides, $2 \int v^{-2} d v=\int_{\mathrm{z}}^{\underline{1}} d x$
$\Rightarrow \quad 2 \frac{\mathrm{v}^{-1}}{-1}=\log |x|+c \Rightarrow \underset{\mathrm{v}}{\mathbf{v}}=\log |x|+c$

Putting $v=\frac{\mathbf{y}}{\mathbf{z}}, \quad \frac{-2}{\left(\frac{\mathbf{y}}{\mathbf{z}}\right)}=\log |x|+c$
or $\frac{-2 z}{y}=\log |x|+c$

To find c : Given: $y=2$, when $x=1$.
\therefore From (iii), $\frac{-2}{2}=\log 1+c$ or $-1=c$
Putting $c=-1$ in (iii), the required particular solution is

$$
\begin{gathered}
-\frac{2 z}{y}=\log |x|-1 \\
\Rightarrow y(\log |x|-1)=-2 x \quad \Rightarrow y=\frac{-2 z}{\operatorname{logIzI}-1}
\end{gathered}
$$

$$
\Rightarrow \quad y=\frac{-2 z}{=(1-\operatorname{logIzI})} \Rightarrow y=\frac{2 z}{1-\operatorname{logIzI}} .
$$

16. Choose the correct answer:

A homogeneous differential equation of the form $\left.\frac{d x}{d y}=h \right\rvert\,\left(\frac{x}{y}\right)$ can be solved by making the substitution:
(A) $y=v x$
(B) $v=y x$
(C) $x=v y$
(D) $x=v$

Sol. We know that a homogeneous differential equation of the form $\frac{\mathrm{az}}{\mathrm{ay}}=h\left(\frac{\mathbf{z}}{\mathbf{y}}\right)$ can be solved by the substitution $\frac{\mathrm{x}}{\mathrm{y}}=v$ i.e., $x=v y$. \therefore Option (C) is the correct answer.
17. Which of the following is a homogeneous differential equation?
(A) $(4 x+6 y+5) d y-(3 x+2 x+4) d x=0$
(B) $(x y) d x-\left(x^{3}+y^{3}\right)$ Acader(cy $\left(x^{3}+2 y^{2}\right) d x+2 x y d y=0$
(D) $y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0$

Sol. Out of the four given options; option (D) is the only option in which all coefficients of $d x$ and $d y$ are of same degree (here 2). It may be noted that $x y$ is a term of second degree.
Hence differential equation in option (D) is Homogeneous differential equation.

Exercise 9.6

In each of the following differential equations given in Exercises 1 to 4, find the general solution: dy

1. $\overline{\mathrm{dx}}+2 y=\sin x$

Sol. The given differential equation is $\frac{a y}{a z}+2 y=\sin x$

Applying Product Rule of Integration

$$
\begin{aligned}
& \left\lvert\, \int \mathrm{I} . \mathrm{II} \mathrm{az}=\mathrm{I} \int \mathrm{II} \mathrm{az}-\int\left(\frac{\mathrm{a}}{\mathrm{az}}(\mathrm{I}) \int \mathrm{II} \mathrm{az}\right) \mathrm{az}^{\rceil}\right., \\
& =e^{2 x}(-\cos x)-\int 2 \mathrm{e}^{2 \mathrm{z}}(-\cos \mathrm{z}) d x \\
\text { or } \mathrm{I} & =-e^{2 x} \cos x+2 \int \mathrm{e}^{2 z} \cos x d x
\end{aligned}
$$

$$
1 \quad 11
$$

Again applying Product Rule,

$$
I=-e^{2 x} \cos x+2\left[e^{2 z} \sin z-\int 2 e^{2 z} \sin z a z\right]
$$

$\Rightarrow \mathrm{I}=-e^{2 x} \cos x+2 e^{2 x} \sin x-4 \quad \int \mathrm{e}^{2 z} \sin \mathrm{z}$ az
or $\mathbf{I}=e^{2 x}(-\cos x+2 \sin x)-41$
Transposing 5I $=e^{2 x}(2 \sin x-\cos x)$
$\therefore \quad I=\frac{\mathrm{e}^{2 z}}{5}(2 \sin x-\cos x)$
Putting this value of I in (i), the required solution is

$$
\left.y e^{2 x}=\frac{\mathrm{e}^{2 z}}{5} \text {-3CUET ©aderos } x\right)+c
$$

Dividing every term by $e^{2 x}, y=\frac{1}{5}(2 \sin x-\cos x)+\frac{c}{\left(e^{2 z}\right)}$
or

$$
y=\frac{1}{5}(2 \sin x-\cos x)+c e^{-2 x}
$$

which is the required general solution.
2. $\frac{\mathrm{dy}}{\mathrm{dx}}+3 y=e^{-2 x}$

Sol. The given differential equation is $\frac{\mathrm{ay}}{\mathrm{az}}+3 y=e^{-2 x}$
| Standard form of linear differential equation by
Comparing with $\frac{\mathrm{az}}{\mathrm{az}}+\mathrm{P} y=\mathrm{Q}$, we have $\mathrm{P}=3$ and $\mathrm{Q}=e^{-2 x}$
$\int \mathrm{P} d x=\int 3 d x=3 \int 1 d x=3 x \quad$ IF. $=\mathrm{e}^{\int \mathrm{Paz}}=e^{3 x}$

Solution is y (I.F.) $=\int \mathrm{Q}($ IF. $) d x+c$
or $y e^{3 x}=\int \mathrm{e}^{-2 \mathrm{z}} e^{3 x} d x+c$ or $=\int \mathrm{e}^{-2 \mathrm{z}+3 \mathrm{z}} d x+c=\int \mathrm{e}^{\mathrm{z}} d x+c$
or $\quad y e^{3 x}=e^{x}+c$
Dividing every term by $e^{3 x}$,
$y=\frac{e^{z}}{e^{3 z}}+\frac{c}{e^{3 z}}$
or

$$
y=e^{-2 x}+c e^{-3 x}
$$

which is the required general solution.
3. $\frac{d y}{d x}+\frac{y}{x}=x^{2}$

Sol. The given differential equation is $\frac{a y}{a z}+\frac{\underline{y}}{z}=x^{2}$

It is of the form $\frac{\mathrm{ay}}{\mathrm{az}}+\mathrm{Py}=\mathrm{Q}$ Comparing $\quad \mathrm{P}=\underline{\underline{\underline{1}}, \mathrm{Q}=x^{2} .}$

$$
\int \mathrm{P} d x=\underline{1}^{\int} d x=\log x \quad \therefore \quad \text { I.F. }=\mathrm{e}^{\int \mathrm{Paz}}=e^{\log x}=x
$$

z
The general solution is y (I.F.) $=\int \mathrm{Q}$ (IF.) $d x+c$
or $y x=\int z^{2} \cdot z \quad d x+c=\int z^{3} d x+c \quad$ or $\quad x y=\frac{z^{4}}{4}+c$. dy
π)
4. $\overline{\mathrm{dx}}+(\sec x) y=\tan x \mid 0 \leq \mathrm{x}<2)$

Sol. The given differential edify
$+(\sec x) y=\tan x$
It is of the form $\overline{\mathrm{az}}+\mathrm{P} y=\mathrm{Q}$.
Comparing $\quad \mathrm{P}=\sec x, \mathrm{Q}=\tan x$

$$
\begin{aligned}
\int \mathrm{P} d x & =\int \sec z d x=\log (\sec x+\tan x) \\
\text { I.F. } & =\mathrm{e}^{\int \mathrm{Paz}=e^{\log (\sec x+\tan x)}=\sec x+\tan x}
\end{aligned}
$$

The general solution is y (I.F.) $=\int \mathrm{Q}$ (I.F.) $d x+c$
or $y(\sec x+\tan x)=\int \tan z(\sec x+\tan x) d x+c$
$=\int\left(\sec z \tan z+\tan ^{2} z\right) d x+c=\int\left(\sec z \tan z+\sec ^{2} z-1\right) d x+c$
$=\sec x+\tan x-x+c$
or $y(\sec x+\tan x)=\sec x+\tan x-x+c$.
For each of the following differential equations given in Exercises 5 to 8, find the general solution:
5. $\cos ^{2} x+y=\tan x\left(0_{\leq} x_{<} \frac{\pi}{}\right)$

$$
\begin{aligned}
& d x \\
& 2 \text {) }
\end{aligned}
$$

Sol. The given differential equation is $\cos ^{2} x \frac{a y}{a z}+y=\tan x$ Dividing throughout by $\cos ^{2} x$ to make the coefficient of $\frac{\text { ay }}{\text { az }}$ unity, $\frac{a y}{a z}+\frac{y}{\cos ^{2} z}=\frac{\tan z}{\cos ^{2} z} \Rightarrow \frac{a y}{a z}+\left(\sec ^{2} x\right) y=\sec ^{2} x \tan x$

It is of the form $\frac{a y}{a z}+P y=Q$.

Comparing $\mathrm{P}=\sec ^{2} x, \mathrm{Q}=\sec ^{2} x \tan x$
$\int \mathrm{P} d x=\int \sec ^{2} \mathrm{z} d x=\tan x \quad$ I.F. $=\mathrm{e}^{\int \mathrm{Paz}}=e^{\tan x}$

The general solution is y (I.F.) $=\int \mathrm{Q}($ I.F. $) d x+c$
or $\quad y e^{\tan x}=\int \sec ^{2} z \tan x \cdot e^{\tan x} d x+c$
Put $\quad \tan x=t$. Differentiating $\sec ^{2} x d x=d t$
$\therefore \quad \int \sec ^{2} \mathrm{Z} \tan x e^{\tan x} d x=\int \mathrm{t} e^{t} d t$
I II
Applying integration by Product Rule,
$=t \cdot e^{t}-\int 1 . e^{t} d t=t \cdot e^{t}-e^{t}=(t-1) e^{t}=(\tan x-1) e^{\tan x}$
Putting this value in eqn. (i), ye $e^{\tan x}=(\tan x-1) e^{\tan x}+c$
Dividing every term by $e^{\tan x}$,
$y=(\tan x-1)+c e^{-\tan x}$ which is the required general solution.
6. $x \frac{\mathrm{dy}}{\mathrm{dx}}+2 y=x^{2} \log x$

Sol. The given differential equation is $x \frac{\text { ay }}{a z}+2 y=x^{2} \log x$ Dividing every term by x (To make coeff. of ay unity)

ay CUET	a	z
ay	zademy	

$y=x \log x$
リ
It is of the form $\frac{\mathrm{ay}}{\mathrm{az}}+\mathrm{Py}=\mathrm{Q}$.
Comparing $\mathrm{P}=\frac{\underline{2}}{\mathrm{z}}, \mathrm{Q}=x \log x \quad \int \mathrm{P} d x=2 \int \underline{\underline{1}} d x=2 \log x$ Z

$$
\text { I.F. }=\mathrm{e}^{\int \mathrm{Paz}}=e^{2 \log x}=e^{\log x^{2}}=x^{2} \mid \because e^{\log f(x)}=f(x)
$$

The general solution is y (I.F.) $=\int \mathrm{Q}($ I.F. $) d x+c$
or $\quad y x^{2}=\int(z \log z) \cdot x^{2} d x+c=\int(\log z) \cdot x^{3} d x+c$
$=\log x \cdot \frac{z^{4}}{4}-\int \frac{1}{z} \cdot \frac{z^{4}}{4} d x+c=\frac{z^{4}}{4} \log x-\frac{1}{4} \int z^{3} d x+c$ or $y x^{2}=\frac{z^{4}}{4} \log x-\frac{z^{4}}{16}+c$.

Dividing by $x^{2}, y=\frac{z^{2}}{4} \log x-\frac{z^{2}}{16}+\frac{c}{z^{2}}$

$$
y=\frac{z^{2}}{16}(4 \log x-1)+\frac{c}{z^{2}} .
$$

7. $x \log x \frac{\mathrm{dy}}{\mathrm{dx}}+y=\frac{2}{\mathrm{x}} \log x$

Sol. The given differential equation is $x \log x \frac{a y}{a z}+y=\frac{\underline{2}}{z} \log x$
Dividing every term by $x \log x$ to make the coefficient of $\frac{a y}{a z}$ unity, $\frac{a y}{a z}+\frac{1}{z \log _{a y}^{a y}} \quad y=\frac{2}{z^{2}}$

Comparing with $\overline{\mathrm{az}}+\mathrm{P} y=\mathrm{Q}$, we have

$$
\begin{aligned}
\mathrm{P} & =\frac{1}{z \log z} \text { and } \mathrm{Q}
\end{aligned}=\frac{\frac{2}{z^{2}}}{\int \mathrm{P} d x}=\int \frac{1}{\mathrm{z} \log \mathrm{z}} d x=\int \frac{1 / \mathrm{z}}{\log z} d x=\log (\log x)
$$

$$
\left|\because \int \frac{f^{\prime}(z)}{f(z)} a z=\log f(z)^{\rceil}\right|
$$

$$
\text { I.F. }=\mathrm{e}^{\int \mathrm{Paz}}=e^{\log (\log x)}=\log x
$$

The general solution is y (I.F.) $=\int \mathrm{Q}($ I.F. $) d x+c$
or $y \log x=\int \frac{\underline{2}}{z^{2}} \log x d x=2 \int\left(\underset{1}{\log z)} \mathrm{z}^{-2} d x+c\right.$

Applying Product Rule of integration,
$z^{-1} 1$ 2SCUET

8. $\left(1+x^{2}\right) d y+2 x y d x=\cot x d x(x \neq 0)$

Sol. The given differential equation is $\left(1+x^{2}\right) d y+2 x y d x=\cot x d x$ Dividing every term by $d x,\left(1+x^{2}\right) \frac{\mathrm{ay}}{\mathrm{az}}+2 x y=\cot x$ Dividing every term by $\left(1+x^{2}\right)$ to make coefficient of $\frac{a y}{a z}$ unity,

$$
\frac{a y}{a z}+\frac{2 z}{1+z^{2}} y=\frac{\cot z}{1+z^{2}}
$$

Comparing with $\frac{\mathrm{ay}}{\mathrm{az}}+\mathrm{P} y=\mathrm{Q}$, we have
$P=\frac{2 z}{1+z^{2}}$ and $Q=\frac{\cot z}{1+z^{2}}$
$\int \mathrm{P} d x=\begin{array}{ll}\frac{2 \mathrm{z}}{1+z^{2}} & d x=\log \mid 1+x\end{array} \quad \left\lvert\, \because \int \frac{\mathrm{f}^{\prime}(\mathrm{z})}{\mathrm{az}} \mathrm{f}(\mathrm{z}) \quad \mathrm{fz} \quad=\operatorname{logI}(\mathrm{I} \mid\right.$
$=\log \left(1+x^{2}\right)$
$\left[\because 1+x^{2}>0 \Rightarrow\left|1+x^{2}\right|=1+x^{2}\right]$

$$
\text { I.F. }=\mathrm{e}^{\int \mathrm{Paz}}=e^{\log \left(1+x^{2}\right)}=1+x^{2}
$$

Solution is

$$
y(\text { I.F. })=\int \mathrm{Q}(\text { I.F. }) d x+c
$$

$\Rightarrow y\left(1+x^{2}\right)=\int \frac{\cot z}{1+z^{2}}\left(1+x^{2}\right) d x+c$
$\Rightarrow y\left(1+x^{2}\right)=\int \cot z+c \Rightarrow y\left(1+x^{2}\right)=\log |\sin x|+c$

Dividing by $1+x^{2}$,

$$
y=\frac{\log I \sin z I}{1+z^{2}}+\frac{c}{1+z^{2}}
$$

or $y=\left(1+x^{2}\right)^{-1} \log |\sin x|+c\left(1+x^{2}\right)^{-1}$
which is the required general solution.
For each of the differential equations in Exercises 9 to 12, find the general solution:
9. $x \frac{\mathrm{dy}}{\mathrm{dx}}+y-x+x y \cot x=0,(x \neq 0)$

Sol. The given differential equation is

$$
\begin{aligned}
& x \frac{\mathrm{ay}}{\mathrm{az}}+y-x+x y \cot x=0 \\
\Rightarrow \quad & x \frac{\mathrm{ay}}{\mathrm{az}}+y+x y \cot x=x \\
\Rightarrow \quad & x \frac{\mathrm{ay}}{\mathrm{az}}+(1+x \cot x) y=x
\end{aligned}
$$

Dividing every term by to make coefficient of $\frac{a y}{a z}$ unity,

$$
y=1
$$

$$
\begin{aligned}
& \text { Comparing with } \frac{\mathrm{ay}}{\mathrm{az}}+\mathrm{P} y=\mathrm{Q}, \text { we have } \\
& \mathrm{P}=\frac{1+\mathrm{z} \cot \mathrm{z}}{\mathrm{z}} \text { and } \mathrm{Q}=1 \\
& \mathrm{Paz}=\frac{(1+\mathrm{z} \cot \mathrm{z})}{} d x=\int\left(\underline{1}+\frac{\mathrm{z} \cot \mathrm{z})}{} d x=(\underline{1}+\cot \mathrm{z}) d x\right. \\
& \left.\int \quad \int\right|_{(z \quad z \quad} \quad \mathrm{z} \quad \int \mathrm{Paz}=\log x+\log \sin x=\log (x \sin x)
\end{aligned}
$$

$$
\text { I.F. }=\mathrm{e}^{\int \mathrm{Paz}=e^{\log (x \sin x)}=x \sin x}
$$

Solution is $y($ I.F. $)=\int \mathrm{Q}($ I.F. $) \mathrm{az}+c$

(Applying Product Æule, \int I. II az = I \int II az $-\int\left(\frac{\mathrm{a}}{(\mathrm{I})} \int_{(\mathrm{az}}^{\mathrm{II} a z)} \mathrm{az}\right)$
$\Rightarrow y(x \sin x)=x(-\cos x)-\int 1(-\cos z) d x+c$

$$
=-x \cos x+\int \cos z a z+c
$$

or $y(x \sin x)=-x \cos x+\sin x+c$
Dividing by $x \sin x, y=\frac{=z \cos z}{z \sin z}+\frac{\sin z}{z \sin z}+\frac{C}{z \sin z}$
or

$$
y=-\cot x+\frac{1}{z}+\frac{C}{z \sin z}
$$

which is the required general solution.
10. $(x+y) \frac{\mathrm{dy}}{\mathrm{dx}}=1$

Sol. The given differential equation is

$$
\begin{aligned}
& (x+y) \frac{\text { ay }}{\mathrm{az}}=1 \quad \Rightarrow d x=(x+y) d y \\
& \Rightarrow \quad \frac{\mathrm{az}}{\mathrm{ay}}=x+y \quad \Rightarrow \quad \frac{\mathrm{az}}{\mathrm{ay}}-x=y \\
& \text { | Standard form of linear differential equation } \\
& \text { Comparing with } \frac{\mathrm{az}}{\mathrm{ay}}+\mathrm{P}_{\mathrm{X}}=\mathrm{Q} \text {, we have, } \mathrm{P}=-1 \text { and } \mathrm{Q}=y \\
& \int \mathrm{Pay}=\int-1 \text { ay }=-\int 1 \text { ay }=-y \quad \text { I.F. }=\mathrm{e}^{\int \mathrm{Pay}}=e^{-y} \\
& \therefore \text { Solution is } x(\text { I.F. })=\int \mathrm{Q}(\text { I.F. }) \text { ay }+c \\
& \text { or } x e^{-y}=\int \mathrm{ye}^{-y} \text { DSCLCLETEmy }
\end{aligned}
$$

$d y+c$
(Applying Product Æule, \int I . II ay = I \int II ay $-\int\left(\frac{\mathrm{a}}{\text { ay }}\right.$ (I) \int II ay \mid ay \mid (())

$$
\begin{aligned}
& \begin{array}{lll}
e^{-y} & e^{-y} & - \\
y
\end{array} \\
& \Rightarrow x e^{-y}=y_{-1}-\int 1_{-1} d y+c \quad=-y e^{-y}+\int \mathrm{e} \quad d y+c \\
& =-y e^{-y}+\frac{\mathrm{e}^{-y}}{-1}+c \\
& \Rightarrow x e^{-y}=-y e^{-y}-e^{-y}+c
\end{aligned}
$$

Dividing every term by $e^{-y}, x=-y-1+\frac{\mathrm{C}}{\left(\mathrm{e}^{-y}\right)}$
or $\quad x+y+1=c e^{y}$
which is the required general solution.
11. $y d x+\left(x-y^{2}\right) d y=0$

Sol. The given differential equation is $y d x+\left(x-y^{2}\right) d y=0$
Dividing by $d y, y \frac{a z}{a y}+x-y^{2}=0$ or $y \frac{\underline{a z}}{a y}+x=y^{2}$ $\frac{a z}{a y}$ unity),
Dividing every term by y (to make coefficient of $\overline{\mathrm{ay}}$ unity),

$$
\left.\frac{\mathrm{az}}{\mathrm{ay}}+\frac{1}{y} x=y \quad \right\rvert\, \text { Standard form of linear differential equation }
$$

$$
\text { Comparing with } \frac{\mathrm{az}}{\mathrm{ay}}+\mathrm{P} x=\mathrm{Q} \text {, we have }
$$

$$
\mathrm{P}=\frac{1}{\mathrm{y}} \text { and } \mathrm{Q}=y
$$

$$
\int \mathrm{P} \text { ay }=\int \frac{1}{\mathrm{y}} d y=\log y
$$

$$
\text { I.F. }=\mathrm{e}^{\int \mathrm{Pay}}=e^{\log y}=y
$$

Solution is $x($ I.F. $)=\int \mathrm{Q}($ I.F. $)$ ay $+c$
$\Rightarrow x \cdot y=\int$ yy ay $+c \Rightarrow x y=\int y^{2} a y+c \Rightarrow x y=\frac{y^{3}}{3}+c$

Dividing by $y, \quad x=\frac{y^{2}}{3}+\frac{c}{y}$
which is the required general solution.
12. $\left(x+3 y^{2}\right) \frac{\mathrm{dy}}{\mathrm{dx}}=y(y>0)$

Sol. The given differential equation is $\left(x+3 y^{2}\right) \frac{a y}{a z}=y$

$$
\Rightarrow y d x=\left(x+3 y^{2}\right) d y \Rightarrow y \frac{\mathrm{az}}{\mathrm{ay}}=x+3 y^{2} \Rightarrow \underset{a z}{y} \frac{\mathrm{az}}{\mathrm{ay}}-x=3 y^{2}
$$

Dividing every term by tocude coefficient of ay unity),

$$
\left.\frac{\mathrm{az}}{\mathrm{ay}}-\frac{1}{y} \quad x=3 y \quad \right\rvert\, \text { Standard form of linear differential equation }
$$

$$
\text { Comparing with } \frac{\mathrm{az}}{\mathrm{ay}}+\mathrm{P}_{\mathrm{X}}=\mathrm{Q} \text {, we have } \mathrm{P}=\frac{-1}{\mathrm{y}} \text { and } \mathrm{Q}=3 y
$$

$$
\begin{aligned}
\int \mathrm{P} \text { ay } & =-\int \frac{1}{\mathrm{y}} d y=-\log y=(-1) \log y=\log y^{-1} \\
\text { I.F. } & =\mathrm{e}^{\int \mathrm{Pay}}=e^{\log y^{-1}}=y^{-1}=\frac{1}{\mathrm{y}}
\end{aligned}
$$

Solution is $x($ I.F. $)=\int \mathrm{Q}($ I.F. $)$ ay $+c$
$\Rightarrow x \cdot \frac{\underline{1}}{\mathrm{y}}=\int 3 \mathrm{y} \cdot \frac{1}{\mathrm{y}} d y+c \Rightarrow \frac{\mathrm{z}}{\mathrm{y}}=3 \int 1 d y+c=3 y+c$

Cross - Multiplying, $x=3 y^{2}+c y$
which is the required general solution.
For each of the differential equations given in Exercises 13 to 15, find a particular solution satisfying the given condition:
13. $\frac{\mathrm{dy}}{\mathrm{d} x}+2 y \tan x=\sin x ; y=0 \quad$ when $x=\frac{\pi}{3}$

Sol. The given differential equation is

$$
\frac{\mathrm{ay}}{\mathrm{az}}+2 y \tan x=\sin x ; y=0 \text { when } x=\frac{\pi}{3}
$$

(It is standard form of linear differential equation)

$$
\begin{aligned}
& \text { Comparing with } \frac{\mathrm{ay}}{\mathrm{az}}+\mathrm{P} y=\mathrm{Q} \text {, we have } \\
& \qquad \begin{aligned}
\mathrm{P} & =2 \tan x \text { and } \mathrm{Q}=\sin x
\end{aligned} \\
& \int \mathrm{P} d x=2 \int \tan \mathrm{z} d x=2 \log \sec x=\log (\sec x)^{2}
\end{aligned}
$$

$$
\left(\because n \log m=\log m^{n}\right)
$$

$$
\text { I.F. }=\mathrm{e}^{\int \mathrm{Paz}}=e^{\log (\sec x)^{2}}=(\sec x)^{2}=\sec ^{2} x
$$

\therefore Solution is y (I.F.) $=\int \mathrm{Q}($ I.F. $) d x+c$

$$
\Rightarrow \quad y \sec ^{2} x=\int \sin \operatorname{zec}^{2} z d x+c
$$

$$
=\int \frac{\sin z}{\cos ^{2} z} d x+c=\int \frac{\sin z}{\cos z \cdot \cos z} d x+c
$$

or

$$
y \sec ^{2} x=\int \tan \mathrm{z} \sec \mathrm{z} d x+c=\sec x+c
$$

$$
\Rightarrow \quad \frac{y}{\cos ^{2} z}=\frac{-1}{\cos z}+c
$$

Multiplying by L.C.M. $=\cos ^{2} x$,

To find $c: y=0$ when $x=3$ (given)
$\therefore \quad$ From (i), $\quad 0=\cos ^{\frac{\pi}{2}}+c \cos ^{2} \frac{\pi}{2}$
or $0=\frac{1}{2}+c\left(\frac{1}{2}\right)^{2}$ or $0=\frac{1}{2}+\frac{c}{4}$
$\Rightarrow \quad \underline{\mathrm{C}}=\frac{-1}{2}$
$\Rightarrow c=-2$

Putting $c=-2$ in (i), the required particular solution is $y=\cos x-2 \cos ^{2} x$.
14. $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{l}{l+} ; y=0$ when $x=1$

Sol. The given differential equation is

$$
\left(1+x^{2}\right) \frac{a y}{a z}+2 x y=\frac{1}{1+z^{2}} ; y=0 \text { when } x=1
$$

Dividing every term by $\left(1+x^{2}\right)$ to make coefficient of $\frac{\text { ay }}{a z}$ unity,

$$
\begin{gathered}
\frac{\mathrm{ay}}{\mathrm{az}}+\frac{2 \mathrm{z}}{1+\mathrm{z}^{2}} \begin{array}{l}
\frac{\mathrm{ay}}{-} \\
\text { Comparing with } \mathrm{az}+\mathrm{P} y=\mathrm{Q} \text {, we have } \\
\left(1+\mathrm{z}^{2}\right)^{2} \\
\mathrm{P}=\frac{2}{1+\mathrm{z}^{2}} \text { and } \mathrm{Q}=\frac{1}{\left(1+\mathrm{z}^{2}\right)^{2}} \\
\int \mathrm{P} d x=\int \frac{2 \mathrm{z}}{1+\mathrm{z}^{2}} d x=\int \frac{\mathrm{f}^{\prime}(\mathrm{z})}{\mathrm{f}(\mathrm{z})} d x \quad=\log f(x)=\log \left(1+x^{2}\right) \\
\text { I.F. }=\mathrm{e}^{\int \mathrm{Paz}}=e^{\log \left(1+x^{2}\right)}=1+x^{2}
\end{array}
\end{gathered}
$$

Solution is y (I.F.) $=\int \mathrm{Q}($ I.F. $) d x+c$
or $\quad y\left(1+x^{2}\right)=\int \frac{1}{\left(1+z^{2}\right)^{2}}\left(1+x^{2}\right) d x+c$
or $\quad y\left(1+x^{2}\right)=\int \frac{1}{z^{2}+1} d x+c=\tan ^{-1} x+c$
or $\quad y\left(1+x^{2}\right)=$ tom? Actademy

To find $c: y=0$ when $x=1$
$\begin{array}{lll}\text { Putting } y & =0 \text { and } & x=1 \text { in }(i), 0=\tan ^{-1} 1+c \\ \text { or } \quad 0 & =\underline{\pi}+c & \because \tan \frac{\pi}{=}=1 \quad \Rightarrow \quad c=-\underline{\pi}\end{array}$ $4 \quad \mid\lfloor 4$

Putting $c=-\frac{\pi}{4}$ in (i), required particular solution is

$$
y\left(1+x^{2}\right)=\tan ^{-1} x-\frac{\pi}{4} .
$$

15. $\frac{\mathrm{dy}}{\mathrm{dx}}-3 y \cot x=\sin 2 x ; y=2$ when $x=\frac{\pi}{2}$

Sol. The given differential equation is $\frac{a y}{a z}-3 y \cot x=\sin 2 x$ Comparing with $\frac{\mathrm{ay}}{\mathrm{az}}+\mathrm{P} y=\mathrm{Q}$, we have

$$
\begin{aligned}
\mathrm{P} & =-3 \cot x \text { and } \mathrm{Q}=\sin 2 x \\
\int \mathrm{P} d x & =-3 \int \cot \mathrm{z} d x=-3 \log \sin x=\log (\sin x)^{-3}
\end{aligned}
$$

$$
\text { I.F. }=\mathrm{e}^{\int P \mathrm{~Pa}}=e^{\log (\sin x)^{-3}}=(\sin x)^{-3}=\frac{1}{\sin ^{3} \mathrm{z}}
$$

The general solution is y (I.F.) $=\int \mathrm{Q}(\mathrm{I} . \mathrm{F}) d x+$.
or $y \frac{1}{\sin ^{3} z}=\int \sin 2 z \cdot \frac{1}{\sin ^{3} z} d x+c$
or $\frac{y}{\sin ^{3} z}=\frac{2 \sin z \cos z}{\sin z} d x+c=2 \quad \frac{\cos z}{\sin ^{2} z} d x+c$
$=2 \int \frac{\cos \mathrm{z}}{\sin \mathrm{z} \cdot \sin \mathrm{z}} d x+c=2 \int \operatorname{cosec} \mathrm{z} \cot \mathrm{z} d x=-2 \operatorname{cosec} x+c$
or $\frac{y}{\sin ^{3} z}=-\frac{2}{\sin z}+c$

Multiplying every term by L.C.M. $=\sin ^{3} x$

$$
\begin{equation*}
y=-2 \sin ^{2} x+c \sin ^{3} x \tag{i}
\end{equation*}
$$

To find c : Putting $y=2$ and $x=\frac{{ }_{2}}{2}$ (given) in (i),
$2=-2 \sin ^{2} \frac{\pi}{2}+c \sin ^{3} \frac{\pi}{2} \quad$ or $\quad 2=-2+c$ or $c=4$
Putting $c=4$ in (i), the required particular solution is

$$
y=-2 \sin ^{2} x+4 \sin ^{3} x
$$

16. Find the equation of the curve passing through the origin, given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of coordinates of that point.
Sol. Given: Slope of the tangent to the curve at any point $(x, y)=$ Sum of coordinates of the point (x, y).
\Rightarrow ay
CUEGz
Academy
$=x+y$
$\Rightarrow \quad \mathrm{ay}_{\mathrm{az}}$

$$
\text { Comparing with } \frac{\mathrm{ay}}{\mathrm{az}}+\mathrm{P} y=\mathrm{Q} \text {, we have } \quad \mathrm{P}=-1 \text { and } \mathrm{Q}=x
$$

$$
\int \mathrm{P} d x=\int-1 d x=-\int 1 d x=-x \quad \text { I.F. }=\mathrm{e}^{\int \mathrm{Paz}}=e^{-x}
$$

$$
\text { Solution is } y(\text { I.F. })=\int \mathrm{Q}(\text { I.F. }) d x+c
$$

$$
\text { i.e., } \quad y e^{-x}=\int \mathrm{z} \mathrm{e}^{-\mathrm{z}} d x+c
$$

$\Rightarrow y e^{-x}=x \frac{\mathrm{e}^{-\mathrm{z}}}{-1}-\int 1 \cdot \frac{\mathrm{e}^{-\mathrm{z}}}{-1} d x+c$
or $y e^{-x}=-x e^{-x}+\int \mathrm{e}^{\mathrm{z}} \mathrm{az}+c$ or $y e^{-x}=-x e^{-x}+\frac{\mathrm{e}^{-\mathrm{z}}}{-1}+c$
or $y e^{-x}=-x e^{-x}-e^{-x}+c \quad$ or $\quad \frac{\mathrm{y}}{\mathrm{e}^{\mathrm{z}}}=-\frac{\mathrm{z}}{\mathrm{e}^{\mathrm{z}}}-\frac{1}{\mathrm{e}^{\mathrm{z}}}+c$
Multiplying by L.C.M. $=e^{x}, y=-x-1+c e^{x}$
To find c : Given: Curve (i) passes through the origin (0,0).
Putting $x=0$ and $y=0$ in (i), $0=0-1+c$
or $\quad-c=-1 \quad$ or $\quad c=1$
Putting $c=1$ in (i), equation of required curve is

$$
y=-x-1+e^{x} \text { or } x+y+1=e^{x}
$$

17. Find the equation of the curve passing through the point $(0$, 2) given that the sum of the coordinates of any point onthe curve exceeds the magnitude of the slope of the tangentto the curve at that point by 5 .
Sol. According to question,
Sum of the coordinates of any point say (x, y) on the curve.
$=$ Magnitude of the slope of the tangent to the curve +5
(because of exceeds)
i.e., $x+y=\frac{a y}{a z}+5$
ay ay
$\Rightarrow \overline{\mathrm{az}}+5=x+y \quad \Rightarrow \quad \overline{\mathrm{az}}-y=x-5$
Comparing with $\frac{\mathrm{ay}}{\mathrm{az}}+\mathrm{P} y=\mathrm{Q}$, we have
$\mathrm{P}=-1$ and $\mathrm{Q}=x-5$
$\int \mathrm{P} d x=\int-1 d x=-\int 1 d x=-x \quad$ I.F. $=\mathrm{e}^{\int \mathrm{Paz}}=e^{-x}$

Solution is $y($ I.F. $)=\int \mathrm{Q}($ I.F. $) d x+c$
or

$$
y e^{-x}=\int(z-5) \mathrm{e}^{-\mathrm{z}} d x+c
$$

$$
111
$$

${ }^{\text {Ap }}$ Applying Product Æule: $\int \mathrm{I} . \mathrm{II} \mathrm{az}=\mathrm{I} \int_{r} \mathrm{II} a z-\int \frac{\mathrm{a}}{\mathrm{a}}$ (I) $\left(\int_{x} \mathrm{II} \mathrm{az}\right) \mathrm{az}$
CUET
Academy e^{-}

$$
y e^{-x}=-(x-5) e^{-x}+\int \mathrm{e}^{-\mathrm{z}} d x+c
$$

or

$$
\begin{aligned}
y e^{-x} & =-(x-5) e^{-x}+\frac{\mathrm{e}^{-\mathrm{z}}}{-1}+c \\
\frac{y}{\left(e^{x}\right)} & =-\frac{(\mathrm{z}-5)}{\left(\mathrm{e}^{\mathrm{z}}\right)}-\frac{1}{\left(\mathrm{e}^{\mathrm{z}}\right)}+c
\end{aligned}
$$

or

Multiplying both sides by L.C.M. $=e^{x}$

$$
\begin{equation*}
y=-(x-5)-1+c e^{x} \tag{i}
\end{equation*}
$$

or $y=-x+5-1+c e^{x}$ or $x+y=4+c e^{x}$
To find c : Curve (i) passes through the point (0,2).
Putting $x=0$ and $y=2$ in (i),

$$
2=4+c e^{0} \text { or }-2=c
$$

Putting $c=-2$ in (i), required equation of the curve is

$$
x+y=4-2 e^{x} \text { or } y=4-x-2 e^{x}
$$

18. Choose the correct answer:

The integrating factor of the differential equation

$$
\frac{\mathrm{dy}}{\mathrm{dx}}-y=2 x^{2} \text { is }
$$

(A) e^{-x}
(B) e^{-y}
(C) $\frac{\mathrm{l}}{\mathrm{x}}$
(D) x

Sol. The given differential equation is $x \frac{\text { ay }}{a z}-y=2 x^{2}$
Dividing every term by x to make coefficient of $\frac{\text { ay }}{a z}$ unity, $\left.\frac{a y}{a z}-\frac{1}{z} y=2 x \quad \right\rvert\,$ Standard form of linear differential equation Comparing with $\frac{\mathrm{ay}}{\mathrm{az}}+\mathrm{P} y=\mathrm{Q}$, we have $\mathrm{P}=\frac{-1}{\mathrm{z}}$ and $\mathrm{Q}=2 x$
$\therefore \int \mathrm{P} d x=^{\int=\underline{1}} d x=-\log x=\log x^{-1} \quad\left[\because n \log m=\log m^{n}\right]$ z
I.F. $=\mathrm{e}^{\int \mathrm{Paz}=e^{\log x^{-1}}=x^{-1}=\underline{1}}$

$$
\left[\because \quad e^{\log f(x)}=f(x)\right]
$$

Z
\therefore Option (C) is the correct answer.
19. Choose the correct answer:

The integrating factor of the differential equation

$$
\left.\left(1-y^{2}\right) \frac{\mathrm{dx}}{\mathrm{dy}}+\underset{\text { SSO ACademy }}{\text { CUET }} 1<y<1\right)
$$

(A) $\frac{\mathrm{l}}{\mathrm{y}^{2}-\mathrm{l}}$
(B) $\frac{\mathrm{l}}{\sqrt{\mathrm{y}^{2}-\mathrm{l}}}$
(C) $\frac{\mathrm{l}}{\mathrm{l}-\mathrm{y}^{2}}$
(D) $\frac{\mathrm{l}}{\sqrt{l-\mathrm{y}^{2}}}$

Sol. The given differential equation is

$$
\left(1-y^{2}\right) \frac{\mathrm{az}}{\mathrm{ay}}+y x=a y(-1<y<1)
$$

Dividing every term by $\left(1-y^{2}\right)$ to make coefficient of $\frac{a z}{a y}$ unity,

$$
\frac{a z}{a y}+\frac{y}{1-y^{2}} \quad x=\frac{a y}{1-y^{2}}
$$

| Standard form of linear differential equation Comparing with $\frac{\mathrm{az}}{\mathrm{ay}}+\mathrm{P}_{\mathrm{X}}=\mathrm{Q}$, we have

$$
\begin{aligned}
& y \text { ay } \\
& P=\overline{1-y^{2}} \text { and } \quad Q=\overline{1-y^{2}}=2 y \\
& \therefore \quad \int \mathrm{P} d y=\int \overline{1-\mathrm{y}^{2}} d y=2 \int \sqrt{1-\mathrm{y}^{2}} d y \\
& =\frac{-1}{2} \log \left(1-y^{2}\right) \\
& =\log \left(1-y^{2}\right)^{-1 / 2} \\
& \text { I.F. }=\mathrm{e}^{\int \mathrm{Pay}}=e^{\log \left(1-y^{2}\right)^{-1 / 2}} \\
& =\left(1-y^{2}\right)^{-1 / 2} \quad\left[\because e^{\log f(x)}=f(x)\right] \\
& =\frac{1}{\sqrt{1-y^{2}}}
\end{aligned}
$$

\therefore Option (D) is the correct answer.

MISCELLANEOUS EXERCISE

1. For each of the differential equations given below, indicate its order and degree (if defined)
(i) $\frac{d^{2} y}{d x^{2}}+5 x\left(\frac{d y}{(d x}\right)^{2}-6 y=\log x$
(ii) $\quad\left(\frac{d y}{(d x}\right)^{3}-4 \left\lvert\,\left(\frac{d y}{d x}\right)^{2}+7 y=\sin x\right.$
$d^{4} y \quad\left(d^{3} y\right)$
(iii) $\left.\overline{\mathrm{dx}^{4}}-\left.\sin \right|_{(\mathrm{dx}}{ }^{3}\right)_{J}=0$

Sol. (i) The given differential equation is

$$
\frac{a^{2} y}{a^{2}}+5 x\left(\frac{a y}{(a z}\right)^{2}-6 y=\log x
$$

The highest order derivative present in this differential equation is $\frac{a^{2} y}{a z^{2}}$ and hence order of this differential equation is 2 .

The given differential equation is a polynomial equation in derivatives and highest power of the highest order derivative $\frac{a^{2} y}{a z^{2}}$ is 1 .
\therefore Order 2, Degree 1 .
(ii) The given differential equation is

$$
\left(\frac{\mathrm{ay}}{\mathrm{az}}\right)^{3}-4 \left\lvert\,\left(\frac{\mathrm{ay}}{\mathrm{az}}\right)^{2}+7 y=\sin x .\right.
$$

The highest order derivative present in this differential equation is $\frac{a y}{a z}$ and hence order of this differential equation is 1 .

The given differential equation is a polynomial equation in derivatives and highest power of the highest order
derivative $\frac{a y}{a z}$ is 3 . $\quad \mid \because$ of $\left|\left(\frac{a y}{a z}\right)^{3}\right|$
\therefore Order 1, Degree 3 .
(iii) The given differential equation is $\begin{aligned} & a^{4} y \\ & \underline{a z^{4}}\end{aligned}-\sin \left(\left.\frac{a^{3} y}{a z^{3}}\right|^{\prime}\right)=0$.

The highest order derivative present in this differential equation is $\frac{a^{4} y}{a z^{4}}$ and hence order of this differential equation is 4 .

Degree of this differential equation is not defined because the given differential equation is not a polynomial equation in derivatives

$$
\left(\text { because of the presence of term } \sin \left(\frac{a^{3} y}{\left(a z^{3}\right.}\right)\right)
$$

\therefore Order 4 and Degree not defined.
2. For each of the exercises given below verify that the given function (implicit of explicit) is a solution of the corresponding differential equation.
(i) $x y=a e^{x}+b e^{-x}+x^{2}: x \frac{\mathrm{~d}^{2} y}{\mathrm{dx}^{2}}+2 \frac{\mathrm{dy}}{\mathrm{dx}}-x y+x^{2}-2=0$
(ii) $y=e^{x}(a \cos x+b \sin x): \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$ $d^{2} y$
(iii)

$$
y=x \sin 3 x: \overline{d^{2}}+9 y-6 \cos 3 x=0
$$

(iv) $x^{2}=2 y^{2} \log y: 05$ Chededy $^{2}-x y=0$

Sol. (i) The given function is

$$
\begin{equation*}
x y=a e^{x}+b e^{-x}+x^{2} \tag{i}
\end{equation*}
$$

To verify: This given function (i) is a solution of differential equation $\frac{a^{2} y}{-}+2^{\text {ay }}-x y+x^{2}-2=0$ $a z^{2} \quad a z$
Differentiating both sides of (i), w.r.t. x,

$$
\begin{gathered}
x \frac{\mathrm{ay}}{\mathrm{az}}+y \cdot 1=a e^{x}+b e^{-x}(-1)+2 x \\
\text { or } \\
x \frac{\mathrm{ay}}{\mathrm{az}}+y=a e^{x}-b e^{-x}+2 x
\end{gathered}
$$

Again differentiating both sides, w.r.t. x

$$
\begin{gathered}
x \frac{a^{2} y}{a z^{2}}+\frac{a y}{a z} \cdot 1+\frac{a y}{a z}=a e^{x}+b e^{-x}+2 \\
\text { or } \quad x \frac{a^{2} y}{a z^{2}}+2 \text { ay }=a e^{x}+b e^{-x}+2
\end{gathered}
$$

\therefore Putting $a e^{x}+b e^{-x}=x y-x^{2}$ from (i), in R.H.S., we have

$$
\begin{aligned}
& x \frac{a^{2} y}{a z^{2}}+2^{\frac{a y}{a z}}=x y-x^{2}+2 \\
& x \frac{a^{2} y}{a z^{2}}+2^{\frac{a y}{a z}}-x y+x^{2}-2=0
\end{aligned}
$$

which is same as differential equation (ii).
\therefore Function given by (i) is a solution of D.E. (ii).
(ii) The given function is

$$
\begin{equation*}
y=e^{x}(a \cos x+b \sin x) \tag{i}
\end{equation*}
$$

To verify: Function given by (i) is a solution of differential equation

$$
\begin{equation*}
\frac{a^{2}}{a z^{2}} y \quad 2 \frac{a y}{a z}+2 y=0 \tag{ii}
\end{equation*}
$$

From (i),

$\Rightarrow \quad \frac{\mathrm{ay}}{\mathrm{az}}=y+e^{x}(-a \sin x+b \cos x)$
(By (i))
$\therefore \frac{\mathrm{a}^{2} \mathrm{y}}{\mathrm{az}^{2}}=\frac{\mathrm{ay}}{\mathrm{az}}+e^{x}(-a \sin x+b \cos x)+e^{x}(-a \cos x-b \sin x)$
or $\frac{\mathrm{a}^{2} \mathrm{y}}{\mathrm{az}^{2}}=\frac{\mathrm{ay}}{\mathrm{az}}+e^{x}(-a \sin x+b \cos x)-e^{x}(a \cos x+b \sin x)$
or $a^{2} y$ ay DeqUEEAT

$$
\begin{aligned}
& a z^{2}=\mathrm{az}{ }^{+}(\mathrm{az} \quad \text { リ }-y \quad \text { (By (iii)) and (By (i)) } \\
& \text { or } \quad \underline{a^{2} y}=2 \underline{a y}-2 y \quad \text { or } \quad \underline{a^{2} y}-2 \underline{a y}+2 y=0 \\
& a z^{2} \text { az } a z^{2} \text { az } \\
& \text { which is same as given differential equation (ii). }
\end{aligned}
$$

\therefore Function given by (i) is a solution of differential equation (ii).
(iii) The given function is

$$
\begin{equation*}
y=x \sin 3 x \tag{i}
\end{equation*}
$$

To verify: Function given by (i) is a solution of differential equation

$$
\begin{equation*}
\frac{a^{2} y}{a z^{2}}+9 y-6 \cos 3 x=0 \tag{ii}
\end{equation*}
$$

From (i), $\frac{\mathrm{ay}}{\mathrm{az}}=x \cdot \cos 3 x \cdot 3+\sin 3 x \cdot 1$

> ay
or $\quad \overline{\mathrm{az}}=3 x \cos 3 x+\sin 3 x$
$\therefore \quad \frac{a^{2} y}{a z^{2}}=3[x(-\sin 3 x) 3+\cos 3 x .1]+(\cos 3 x) 3$

$$
\frac{\mathrm{a}^{2} y}{a z^{2}}=-9 x \sin 3 x+3 \cos 3 x+3 \cos 3 x
$$

$$
=-9 x \sin 3 x+6 \cos 3 x
$$

$$
=-9 y+6 \cos 3 x
$$

$$
[\mathrm{By}(i)]
$$

or $\quad \frac{\mathrm{a}^{2} y}{\mathrm{az}^{2}}+9 y-6 \cos 3 x=0$
which is same as differential equation (ii).
\therefore Function given by (i) is a solution of differential equation (ii).
(iv) The given function is

$$
\begin{equation*}
x^{2}=2 y^{2} \log y \tag{i}
\end{equation*}
$$

To verify: Function given by (i) is a solution of differential equation

$$
\begin{equation*}
\left(x^{2}+y^{2}\right) \frac{a y}{a z}-x y=0 \tag{ii}
\end{equation*}
$$

Differentiating both sides of (i) w.r.t. x, we have

Dividing by $2, x=\frac{\mathrm{ay}}{\mathrm{az}}(y+2 y \log y)$

$$
\therefore \quad \frac{a y}{a z}=\frac{z}{y+2 y \log y}=\frac{z}{y(1+2 \log y)}
$$

$$
\begin{aligned}
& 2 \log y= \text { from (i), } \\
& \frac{y^{2}}{\text { ay }} \\
& \frac{\mathrm{az}}{y_{\mid}\left(1+\underline{z}^{2}\right)} \frac{\left.\mathrm{y}^{2}\right)}{\left(\mathrm{y}^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{a y}{a z}=\frac{z y}{z^{2}+y^{2}} \\
& \text { Cross-multiplying, }\left(x^{2}+y^{2}\right) \frac{a y}{a z}=x y \\
& \text { or } \quad\left(x^{2}+y^{2}\right) \frac{a y}{a z}-x y=0
\end{aligned}
$$

which is same as differential equation (ii).
\therefore Function given by (i) is a solution of differential equation (ii).
3. Form the differential equation representing the family of curves $(x-a)^{2}+2 y^{2}=a^{2}$, where a is an arbitrary constant.
Sol. Equation of the given family of curves is

$$
\begin{array}{rlrl}
& \begin{aligned}
(x-a)^{2}+2 y^{2} & =a^{2} \\
& \text { or } \\
x^{2}+a^{2}-2 a x+2 y^{2} & =a^{2} \\
\text { or } & x^{2}-2 a x+2 y^{2}
\end{aligned}=0 \\
& \text { or } & x^{2}+2 y^{2} & =2 a x
\end{array}
$$

Number of arbitrary constants is one only (a here).
So, we shall differentiate both sides of equation (i) only once w.r.t. x.
$\begin{array}{rlrl}\therefore & \text { From (i), } & 2 x+2 \cdot 2 y \frac{\mathrm{ay}}{\mathrm{az}} & =2 a \\ \text { or } & 2 x+4 y \frac{\mathrm{ay}}{\mathrm{az}} & =2 a\end{array}$
Dividing eqn. (i) by eqn. (ii) (To eliminate a), we have

$$
\frac{z^{2}+2 y^{2}}{2 z+4 \frac{a y}{a z}}=\frac{2 a z}{2 a}=x
$$

Cross-multiplying, $x(2 z+4 y$ ay $)$

$$
(a z)^{\prime}=x^{2}+2 y^{2}
$$

or $2 x^{2}+4 x y \frac{\text { ay }}{\text { az }}=x^{2}+2 y^{2} \quad$ or $\quad 4 x y$ ay $=2 y^{2}-x^{2}$
az
$\Rightarrow \quad \frac{a y}{a z}=\frac{2 y^{2}-z^{2}}{4 z y}$ which is the required differential equation.
4. Prove that $x^{2}-y^{2}=c\left(x^{2}+y^{2}\right)^{2}$ is the general solution of the differential equation $\left(x^{3}-3 x y^{2}\right) d x=\left(y^{3}-3 x^{2} y\right) d y$, where c is a parameter.
Sol. The given differential equation is

$$
\begin{equation*}
\left(x^{3}-3 x y^{2}\right) d x=\left(y^{3}-3 x^{2} y\right) d y \tag{i}
\end{equation*}
$$

Here each coefficient of dxand $d y$ iq of same degree (Here 3), therefore differential equation (DSlqatademy be homogeneous differential
equation.
From (i), $\frac{a y}{a z}=\frac{\left(z^{3}-3 z y^{2}\right)}{y^{3}-3 z^{2} y}$
Dividing every term in the numerator and denominator of R.H.S. by x^{3},

$$
\begin{gathered}
\frac{a y}{a z}=\frac{1-3 \left\lvert\,\left(\frac{y}{(z)}\right)^{2}\right.}{(y)^{3}-3(y)}=f\left(\frac{y}{z}\right) \\
(z)(z)
\end{gathered}
$$

Therefore the given differential equation is homogeneous.
Put $\frac{\mathrm{y}}{\mathrm{z}}=v$. Therefore $y=v x . \therefore \frac{\mathrm{ay}}{\mathrm{az}}=v .1+x \frac{\mathrm{av}}{\mathrm{az}}=v+x \frac{\mathrm{av}}{\mathrm{az}}$
Putting these values in eqn. (ii),

$$
\begin{gathered}
v+x \frac{\mathrm{av}}{\mathrm{az}}=\frac{1-3 \mathrm{v}^{2}}{\mathrm{v}^{3}-3 \mathrm{v}} \\
\therefore \quad x \frac{\mathrm{av}}{\mathrm{az}}=\frac{1-3 \mathrm{v}^{2}}{\mathrm{v}^{3}-3 \mathrm{v}}-v=\frac{1-3 \mathrm{v}^{2}-\mathrm{v}^{4}+3 \mathrm{v}^{2}}{\mathrm{v}^{3}-3 \mathrm{v}} \Rightarrow x \frac{\mathrm{av}}{\mathrm{az}}=\frac{1-\mathrm{v}^{4}}{\mathrm{v}^{3}-3 \mathrm{v}}
\end{gathered}
$$

Cross-multiplying, $\quad x\left(v^{3}-3 v\right) d v=\left(1-v^{4}\right) d x$
Separating variables, $\frac{\left(\mathrm{v}^{3}-3 \mathrm{v}\right)}{1-\mathrm{v}^{4}} d v=\frac{\mathrm{az}}{\mathrm{z}}$
Integrating both sides,

$$
\int_{1-v^{4}}^{\frac{v^{3}-3 v}{1}} d v=\int_{z} d x=\log x+\log c
$$

Let us form partial fractions of

$$
\begin{align*}
\frac{v^{3}-3 v}{1-v^{4}}= & \frac{v^{3}-3 v}{\left(1-v^{2}\right)\left(1+v^{2}\right)} \quad \text { or } \quad \frac{v^{3}-3 v}{1-v^{4}}=\frac{v^{3}-3 v}{(1-v)(1+v)\left(1+v^{2}\right)} \\
& =\frac{A}{1-v}+\frac{B}{1+v}+\frac{C v+D}{1+v^{2}} \tag{iv}
\end{align*}
$$

Multiplying both sides of (iv) by L.C.M. $=(1-v)(1+v)\left(1+v^{2}\right)$, $v^{3}-3 v=\mathrm{A}(1+v)\left(1+v^{2}\right)+\mathrm{B}(1-v)\left(1+v^{2}\right)+(\mathrm{C} v+\mathrm{D})\left(1-v^{2}\right)$

$$
=\mathrm{A}\left(1+v^{2}+v+v^{3}\right)+\mathrm{B}\left(1+v^{2}-v-v^{3}\right)+\mathrm{C} v-\mathrm{C} v^{3}+\mathrm{D}-\mathrm{D} v^{2}
$$

Comparing coefficients of like powers of v,

$$
\begin{array}{ll}
\boldsymbol{v}^{3} & \mathrm{~A}-\mathrm{B}-\mathrm{C}=1 \\
\boldsymbol{v}^{2} & \mathrm{~A}+\mathrm{B}-\mathrm{D}=0 \\
\boldsymbol{v} & \mathrm{~A}-\mathrm{B}+\mathrm{C}=-3 \tag{vii}
\end{array}
$$

Constants $\mathrm{A}+\mathrm{B}+\mathrm{D}=0$
Let us solve eqns. (v), (vi), (vii), (viii) for A, B, C, D.
Eqn. (v) - eqn. (vii) gives, $-2 \mathrm{C}=4 \Rightarrow \mathrm{C}=\frac{-4}{2}=-2$
Eqn. (vi) - eqn. (viii) gines Acdedemy or D = 0

Putting $\mathrm{C}=-2$ in (v),
$\mathrm{A}-\mathrm{B}+2=1 \quad \Rightarrow \mathrm{~A}-\mathrm{B}=-1$
Putting $\mathrm{D}=0$ in (vi),

$$
\begin{equation*}
A+B=0 \tag{x}
\end{equation*}
$$

Adding (ix) and (x),

$$
2 A=-1 \quad \Rightarrow A=\frac{-1}{2}
$$

From (x), B $=-\mathrm{A}=\frac{1}{2}$
Putting values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D in (iv), we have

$$
\begin{aligned}
& \frac{v^{3}-3 v}{1-v^{4}}=\frac{\frac{-1}{2}}{1-v}+\frac{\frac{1}{2}}{1+v}-\frac{2 v}{1+v^{2}} \\
& \therefore \int \frac{\mathrm{v}^{3}-3 \mathrm{v}}{1-\mathrm{v}^{4}} d v=\frac{-1}{2} \frac{\log (1-\mathrm{v})}{-1}+{ }_{2} \log (1+v) \\
& -\log \left(1+v^{2}\right){ }_{\lfloor }^{\lceil }\left\lceil\because \frac{f^{\prime}(v)}{f(v)} a v=\log f(v)\right\rceil \\
& =\frac{1}{2} \log (1-v)+\frac{1}{2} \log (1+v)-\log \left(1+v^{2}\right) \\
& =\frac{1}{2}[\log (1-v)+\log (1+v)]-\log \left(1+v^{2}\right) \\
& =\frac{1}{2} \log (1-v)(1+v)-\log \left(1+v^{2}\right) \\
& \left.\Rightarrow \int \frac{\mathrm{v}^{3}-3 \mathrm{v}}{1-\mathrm{v}^{4}} d v=\log (1-v) \quad-\log (1+v)=\log \left|\frac{\sqrt{1 / 2}}{\left(1+\mathrm{v}^{2}\right.}\right|_{j}\right)
\end{aligned}
$$

Putting this value in eqn. (iii),
$\left.\log \left|\frac{\sqrt{1-v^{2}}}{\left(1+v^{2}\right.}\right|\right)=\log x c$

$$
\frac{\sqrt{1-\mathrm{v}^{2}}}{1+\mathrm{v}^{2}}=x c
$$

Squaring both sides and cross-multiplying, $1-v^{2}=c^{2} x^{2}\left(1+v^{2}\right)^{2}$
Putting $v=\frac{\mathrm{y}}{\mathrm{z}}, 1-\frac{\mathrm{y}^{2}}{\mathrm{z}^{2}}=c^{2} x^{2}\left(1+\frac{\mathrm{y}^{2}}{\mathrm{z}^{2}}\right)^{2}$
or $\frac{\mathrm{z}^{2}-\mathrm{y}^{2}}{\mathrm{z}^{2}}=c^{2} x^{2} \quad \frac{\left(\mathrm{z}^{2}+\mathrm{y}^{2}\right)^{2}}{\mathrm{z}^{4}} \quad$ or $\quad \begin{gathered}\mathrm{z}^{2}-\mathrm{y}^{2} \\ \mathrm{z}^{2}\end{gathered}=\frac{\mathrm{c}^{2}\left(\mathrm{z}^{2}+\mathrm{y}^{2}\right)^{2}}{\mathrm{z}^{2}}$
or $\quad x^{2}-y^{2}=\mathrm{C}\left(x^{2}+y^{2}\right)^{2}$ where $c^{2}=\mathrm{C}$
which is the required general solution.
5. Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
Sol. We know that the circle in the first quadrant which toustge CHET coordinates axes has centue (at, cardertye
a is the radius of the circle. (See adjoining figure)
\therefore Equation of the circle is

$$
\begin{equation*}
(x-a)^{2}+(y-a)^{2}=a^{2} \tag{i}
\end{equation*}
$$

or $x^{2}+y^{2}-2 a x-2 a y+a^{2}=0$
Differentiating w.r.t x, we get,
$2 x+2 y y^{\prime}-2 a-2 a y^{\prime}=0$
Dividing by $2, x+y y^{\prime}=a\left(1+y^{\prime}\right)$
or

$$
a=\frac{\mathrm{z}+\mathrm{yy}^{\prime}}{1+\mathrm{y}^{\prime}}
$$

Substituting the value of a in (i), to eliminate a, we get

$$
\left(z-\frac{z+y y^{\prime}}{}\right)^{2}+\left(y-\frac{z+y y^{\prime}}{}+\frac{y^{2}}{2}=\mid\left(z+y y^{\prime}\right)^{2}\right.
$$

$$
\text { or } \left.\left\lvert\, \begin{array}{ccc}
\left(\underline{z+z y^{\prime}-z-y y^{\prime}}\right)^{2} & \left(y+y y^{\prime}-z-y y^{\prime}\right.
\end{array}\right.\right)^{2}\left(\underline{z+y y^{\prime}}\right)^{2}
$$

Multiplying by L.C.M. $=\left(1+y^{\prime}\right)^{2}$

$$
\begin{aligned}
\left(x y^{\prime}-y y^{\prime}\right)^{2}+(y-x)^{2} & =\left(x+y y^{\prime}\right)^{2} \text { or } \\
y^{\prime 2}(x-y)^{2}+(x-y)^{2} & =\left(x+y y^{\prime}\right)^{2} \text { or } \\
(x-y)^{2}\left(1+y^{\prime 2}\right) & =\left(x+y y^{\prime}\right)^{2}
\end{aligned}
$$

which is the required differential equation.
6. Find the general solution of the differential equation

$$
\frac{\mathrm{dy}}{\mathrm{dx}}+\sqrt{\frac{1-\mathrm{y}^{2}}{1-\mathrm{x}^{2}}}=0
$$

Sol. The given differential equation is

$$
\begin{aligned}
& \frac{\mathrm{ay}}{\mathrm{az}}+\sqrt{\frac{1-\mathrm{y}^{2}}{1-\mathrm{z}^{2}}=0} \quad \Rightarrow \frac{\mathrm{ay}}{\mathrm{az}}=\frac{-\sqrt{1-\mathrm{y}^{2}}}{\sqrt{1-\mathrm{z}^{2}}} \\
& \Rightarrow \quad \sqrt{1-\mathrm{z}^{2}} d y=-\sqrt{1-\mathrm{y}^{2}} d x \\
& \text { Separating Variables, } \frac{\mathrm{ay}}{\sqrt{1-\mathrm{y}^{2}}}=\frac{-\mathrm{az}}{\sqrt{1-\mathrm{z}^{2}}}
\end{aligned}
$$

Integrating both sides, $\int \frac{1}{\sqrt{1-y^{2}}} d y=-\int \frac{1}{\sqrt{1-z^{2}}} d x$
$\Rightarrow \quad \sin ^{-1} y=-\sin ^{-1} x+c$
$\Rightarrow \quad \sin ^{-1} x+\sin ^{-1} y=c$
which is the required general solution.
7. Show that the general solution of the differential equation $\frac{d y}{d x}+\frac{y^{2}+y+1}{x^{2}+x+1}=0$ is given by $(x+y+1)=A(1-x-2 \times y)$ where A is parameter.
Sol. The given differential entritacalemy

$$
\frac{a y}{a z}+\frac{y^{2}+y+1}{z^{2}+z+1}=0 \Rightarrow \frac{a y}{a z}=-\left(\left.\frac{y^{2}+y+1}{\left(z^{2}+z+1\right.} \right\rvert\,\right)
$$

Multiplying by $d x$ and dividing by $y^{2}+y+1$, we have

$$
\frac{a y}{y^{2}+y+1}=\frac{-a z}{z^{2}+z+1}
$$

$\Rightarrow \quad \frac{a y}{y^{2}+y+1}+\frac{a z}{z^{2}+z+1}=0$
Integrating both sides,

$$
\begin{equation*}
\int \frac{1}{\mathrm{y}^{2}+\mathrm{y}+1} d y+\int \frac{1}{\mathrm{z}^{2}+\mathrm{z}+1} d x=0 \tag{i}
\end{equation*}
$$

Now, $y^{2}+y+1=y^{2}+y+\frac{1}{4}-\frac{1}{4}+1$

$$
\left\lceil\begin{array}{llllll}
\Gamma & 4 & (1 &)^{2} & (1)^{2} & 1
\end{array}\right]
$$

$L^{\left.\text {To complete squares, add and subtract }{ }_{(2} \text { coif. of }\left.\mathrm{y}\right|_{J}=\left|(2){ }_{4}{ }_{4}\right|\right\rfloor \mid}$

$$
\begin{aligned}
& (\underline{1})^{2} \quad \underline{3}(\underline{1})^{2}(\underline{\sqrt{3}})^{2} \\
& =|(y+2)+4=|(y+2)+| 2 \\
& \therefore \quad \int \frac{21}{y+y+1} d y=\int \frac{1}{(1)^{2}(\sqrt{3})^{2}} d y \\
& (y+2)^{+} \mid 2 \\
& \frac{1}{\left(\frac{\sqrt{3}}{2}\right)} \tan ^{-1} \frac{y+\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}} \tan ^{-1}-2 y+1 \\
& \text { (2) } 2
\end{aligned}
$$

Changing y to $x, \quad \int \frac{1}{z^{2}+z+1} d x=\frac{2}{\sqrt{3}} \tan ^{-1} \underline{2 z+1}$ $\sqrt{3}$
Putting these values in eqn. (i),

$$
\frac{2}{\sqrt{3}} \tan ^{-1} \frac{2 y+1}{\sqrt{3}}+\frac{2}{\sqrt{3}} \tan ^{-1} \frac{2 z+1}{\sqrt{3}}=c
$$

Multiplying by $\frac{\sqrt{3}}{2}, \quad \quad \tan ^{-1} \frac{2 y+1}{\sqrt{3}}+\tan ^{-1} \frac{2 z+1}{}=\frac{\sqrt{3}}{2} c$ $\sqrt{3}$
$\left[\because \tan ^{-1} a+\tan ^{-1} b=\tan ^{-1} \frac{a+b}{1-a b}\right.$ and replacing $\frac{\sqrt{3}}{2} c$ by $\left.\tan ^{-1} c^{\prime}\right]$
Multiplying every term in the numerator and denominator of
L.H.S. by 3, we have

$$
\begin{array}{rlrl}
& & \frac{\sqrt{3}(2 z+2 y+2)}{3-(4 z y+2 z+2 y+1)} & =c^{\prime} \\
& \text { or } & \sqrt{3}(2 x+2 y+2) & =c^{\prime}(2-2 x-2 y-4 x y) \\
\Rightarrow & 2 \sqrt{3}(x+y+1) & =2 c^{\prime}(1-x-y-2 x y)
\end{array}
$$

$$
\mathrm{c}^{\prime} \quad(1-x-y-2 x y)
$$

Dividing every term by $2 \sqrt{3}, x+y+1=$
$\frac{}{\sqrt{3}}$
or $\quad(x+y+1)=\mathrm{A}(1-x-y-2 x y) \quad$ where $\mathrm{A}=\frac{\mathrm{c}^{\prime}}{\sqrt{3}}$.
8. Find the equation of the curve passing through the point $\left(0, \frac{\pi}{4}\right)$ whose differential equation is

$$
\sin x \cos y d x+\cos x \sin y d y=0
$$

Sol. The given differential equation is

Separating variables, $\quad \frac{\sin z}{\cos z} d x=\frac{-\sin y}{\cos y} d y$
$\Rightarrow \quad \tan x d x=-\tan y d y$
Integrating both sides,

Putting $x=0$ and $y=\frac{\underline{\pi}}{4}$ in (i), sec 0 sec $\frac{\underline{\pi}}{4}=c \quad$ or $\quad \sqrt{2}=c$.

Putting $c=\sqrt{2}$ in (i), equation of required curve is

$$
\frac{\sec z}{\cos y}=\sqrt{2} \quad \Rightarrow \quad \cos y=\sec x \quad \Rightarrow \quad \cos y=\frac{\sec z}{\sqrt{2}}
$$

9. Find the particular solution of the differential equation $\left(1+e^{2 x}\right) d y+\left(1+y^{2}\right) e^{x} d x=0$, given that $y=1$ when $\boldsymbol{x}=\mathbf{0}$.
Sol. The given differential equation is

$$
\left(1+e^{2 x}\right) d y+\left(1+y^{2}\right) e^{x} d x=0
$$

Dividing every term by $\left(1+y^{2}\right)\left(1+e^{2 x}\right)$, we have

Integrating both sides, we have

$$
\begin{array}{r}
\int \frac{1}{1+\mathrm{y}^{2}} d y+\int \frac{\mathrm{e}^{\mathrm{z}}}{1+\mathrm{e}^{2 \mathrm{z}}} d x=c \\
\tan ^{-1} y+\int \frac{\mathrm{e}^{\mathrm{z}}}{1+\mathrm{e}^{2 z}} d x=c \tag{i}
\end{array}
$$

To evaluate $\int \frac{\mathrm{e}^{\mathrm{z}}}{1+\mathrm{e}^{2 z}} d x$
Put $e^{x}=t \quad \therefore \quad e^{x}=\frac{\text { at }}{\text { az }}$ or $e^{x} d x=d t$
$\therefore \quad \int \frac{\mathrm{e}^{\mathrm{z}} \mathrm{az}}{1+\mathrm{e}^{2 \mathrm{z}}}=\int \frac{\mathrm{at}}{1+\mathrm{t}^{2}}=\tan ^{-1} t=\tan ^{-1} e^{x}$
Putting this value in (i), $\tan ^{-1} y+\tan ^{-1} e^{x}=c$
To find $c: y=1$ when $x=0$ (given)
$\left.\begin{array}{llll}\text { Putting } x=0 \text { and } y=1 \text { in (ii), } & \tan ^{-1} 1+\tan ^{-1} 1=c \quad\left(\because{ }^{0}=1\right. \\ \text { or } \quad \underline{\pi}+\underline{\pi}^{\boldsymbol{\pi}}=c & \Gamma \ldots \tan \underline{\pi}=1 \quad \therefore \tan ^{-1} 1=\underline{\pi}^{-}\end{array}\right)$
$4 \quad 4$
4
or

$$
c=\frac{2 \pi}{4}=\frac{\pi}{2}
$$

Putting $c=\frac{\pi}{2}$ in (ii), the particular solution is

$$
\tan ^{-1} y+\tan ^{-1} e^{x}=\frac{\pi}{2}
$$

10. Solve the differential equation
$y e^{x / y} d x=\left(x e^{x / y}+y^{2}\right) d y(y \neq 0)$.
Sol. The given differential equation is
$y \cdot e^{x / y} d x=\left(x \cdot e^{x / y}+y^{2}\right) d y, \quad y \neq 0$
or

$$
\frac{a z}{a y}=\frac{z e^{z / y}+y^{2}}{y \cdot e^{z / y}}=\frac{z e^{z / y}}{y e^{z / y}}+\frac{y^{2}}{y e^{z / y}}
$$

or $\quad \frac{\mathrm{az}}{\mathrm{ay}}=\frac{\mathrm{z}}{\mathrm{y}}+y e^{-x / y}$
It is not a homogeneous differential equation (because of presence of only y as a factor) yet it can be solved by putting $\frac{\mathbf{Z}}{y}=v$ i.e., $x=v y$.
so that $\frac{\mathrm{az}}{\mathrm{ay}}=\quad{ }^{v}+\frac{\mathrm{av}}{\mathrm{ay}}$
Putting these values of x and $\frac{a z}{a y}$ in (i), we have $v+y \underline{\mathrm{av}}$

CUET
$=v+y e^{-v}$
or $y \frac{\mathrm{av}}{\mathrm{av}}=y e^{-v} \quad$ or $y \frac{\mathrm{av}}{\mathrm{ay}}=\frac{\mathrm{y}}{\mathrm{e}^{\mathrm{v}}}$
Cross-multiplying and dividing both sides by y,

$$
e^{v} d v=d y
$$

Integrating $e^{v}=y+c$ or $e^{x / y}=y+c$ which is the required general solution.
11. Find a particular solution of the differential equation $(x-y)(d x+d y)=d x-d y$ given that $y=-1$ when $x=0$.

Sol. The given differential equation is

$$
\begin{align*}
& \quad(x-y)(d x+d y)=d x-d y \\
& \text { or } \quad(x-y) d x+(x-y) d y=d x-d y \\
& \text { or }(x-y) d x-d x+(x-y) d y+d y=0 \\
& \text { or } \quad(x-y-1) d x+(x-y+1) d y=0 \\
& \Rightarrow \quad(x-y+1) d y=-(x-y-1) d x \\
& \Rightarrow \\
& \therefore \quad \frac{\mathrm{ay}}{\mathrm{az}}=-\frac{(\mathrm{z}-\mathrm{y}-1)}{\mathrm{z}-\mathrm{y}+1} \tag{i}
\end{align*}
$$

Put $x-y=t$
Differentiating w.r.t. $x, 1-\frac{a y}{a z}=\frac{a t}{a z}$
$\Rightarrow-\frac{a y}{a z}=\frac{a t}{a z}-1 \Rightarrow \frac{a y}{a z}=\frac{-\underline{a t}}{a z}+1$
Putting these values in (i), $\frac{=\underline{a t}}{a z}+1=-\left(\frac{\mathrm{t}-1}{\mathrm{t}+1}\right)$ at $\quad(\mathrm{t}-1)$
$\left.\Rightarrow \quad-\overline{a z}=-1-\left.\right|_{\mathrm{t}+1}\right)^{\prime}$
Multiplying by $-1, \frac{a t}{a z}=1+\frac{t-1}{t+1}=\frac{t+1+t-1}{t+1}$
$\Rightarrow \quad \frac{a t}{a z}=\frac{2 t}{t+1}$
$\Rightarrow(t+1) d t=2 t d x \quad \Rightarrow \quad \frac{\mathrm{t}+1}{\mathrm{t}} d t=2 d x$
Integrating both sides, $\int(\underline{t+1}) d t=2 \int 1 d x$
$(1) \mid$
or $\quad \int^{(\underline{t}+1)} d t=2 x+c \quad$ or $\quad \int\left(1+\frac{1}{}\right) d t=2 x+c$
$\Rightarrow \quad{ }^{\mid}+\left.\mathbf{t}^{\mathbf{t}}{ }^{\mathbf{t}}\right|^{\prime}{ }_{t} \mid=2 x+c$
t ${ }^{j}$
Putting $t=x-y, x-y+\log |x-y|=2 x+c$
$\Rightarrow \quad \log |x-y|=x+y+c$
To find $c: y=-1$ when $x=0$
Putting $x=0, y=-1$ in (ii),

$$
\log 1=0-1+c \text { or } 0=-1+c
$$

$\therefore \quad c=1$
Putting $c=1$ in (ii), required particular solution is
12. Solve the differential equation $\mid \sum_{\sqrt{\sqrt{x}}-\left.\left.l_{x}\right|^{-}\right|_{d y}=1(x \neq 0)}$

Sol. The given differential equation is

Multiplying both sides by $\frac{a y}{a z}$,

$$
\frac{e^{-2 \sqrt{z}}}{\sqrt{z}}-\frac{y}{\sqrt{z}}=\frac{\text { ay }}{\frac{\text { ay }}{\text { az }}} \quad \text { or } \quad \frac{a y}{a z}+\frac{y}{\sqrt{z}}=\frac{e^{-2 \sqrt{z}}}{\sqrt{z}}
$$

$$
\text { It is of the form } \mathrm{az}+\mathrm{P} y=\mathrm{Q} \text {. }
$$

Comparing, $\mathrm{P}=\frac{1}{\sqrt{\mathrm{Z}}_{1}}$ and $\mathrm{Q}=\frac{\mathrm{e}^{-2 \sqrt{\mathrm{z}}}}{\sqrt{\mathrm{z}}}$

$$
\begin{aligned}
\int \mathrm{P} d x & =\int \frac{1}{\sqrt{\mathrm{z}}} d x=\int \mathrm{z}^{-1 / 2} d x=\frac{\mathrm{z}^{1 / 2}}{1 / 2}=2^{\sqrt{\mathrm{z}}} \\
\text { I.F. } & =\mathrm{e}^{\int \mathrm{P} \mathrm{az}}=\mathrm{e}^{2} \sqrt{\mathrm{z}}
\end{aligned}
$$

The general solution is

$$
\sqrt{z}
$$

Multiplying both sides by e^{-2}, we have

$$
y=\mathrm{e}^{-2 \sqrt{z}}(2 \sqrt{\mathrm{z}}+c) \text { is the required general solution. }
$$

13. Find a particular solution of the differential equation dx $\overline{\mathrm{dy}}+y \cot x=4 x \operatorname{cosec} x(x \neq 0)$ given that $y=0$, when $x=\frac{\pi}{2}$.
Sol. The given differential equation is

$$
\frac{\mathrm{ay}}{\mathrm{az}}+y \cot x=4 x \operatorname{cosec} x
$$

(It is standard form of linear differential equation.)
Comparing with $\frac{\mathrm{ay}}{\mathrm{az}}+\mathrm{P} y=\mathrm{Q}$, we have

$$
\begin{aligned}
\mathrm{P} & =\cot x \text { and } \mathrm{Q}=4 x \operatorname{cosec} x \\
\int \mathrm{P} d x & =\mathrm{DGUEGot} \mathrm{z}
\end{aligned}
$$

$$
\begin{aligned}
& y(\text { I.F. })=\int \mathrm{Q}(\text { I.F. }) d x+c \\
& \mathrm{ye}^{2 \sqrt{\mathbf{z}}}=\int^{\frac{\mathrm{e}^{-2 \sqrt{\mathbf{z}}}}{\sqrt{\mathbf{Z}}}} \mathrm{e}^{2 \sqrt{\mathbf{z}}} \quad d x+c=\int^{\frac{1}{\sqrt{\mathbf{Z}}}} d x+c \\
& \mathrm{y} \cdot \mathrm{e}^{2 \sqrt{\mathbf{z}}}=\int \mathrm{z}^{-1 / 2} d x+c=\frac{\mathbf{z}^{1 / 2}}{\frac{1}{2}}+c=2^{\sqrt{\mathbf{Z}}}+c
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{e}^{\int \mathrm{Paz}} & =\log \\
& \sin x \\
& =e^{\log } \\
& \sin x= \\
& \sin x
\end{aligned}
$$

Solution is $\quad y($ I.F. $)=\int \mathrm{Q}$ (I.F.) $d x+c$

$$
\Rightarrow \quad y(\sin x)=\int 4 z \operatorname{cosec} z \sin x d x+c
$$

$$
\Rightarrow \quad y(\sin x)=4 \int z \cdot \frac{1}{\sin z} \sin x d x+c
$$

or

$$
y \sin x=4 \int \mathrm{zaz}+c=4 \cdot \frac{\mathrm{z}^{2}}{2}+c
$$

or

$$
\begin{equation*}
y \sin x=2 x^{2}+c \tag{i}
\end{equation*}
$$

To find c : Given that $y=0$, when $x=\frac{\pi}{2}$.
Putting $\quad x=\frac{\pi}{2}$ and $y=0$ in (i), $0=2 \cdot \frac{\pi^{2}}{4}+c$
or $0=\frac{\pi^{2}}{2}+c \quad \Rightarrow c=\frac{-\pi^{2}}{2}$
Putting $c=-\frac{\pi^{2}}{2}$ in (i), the required particular solution is

$$
y \sin x=2 x^{2}-\frac{\pi^{2}}{2}
$$

14. Find a particular solution of the differential equation $(x+1) \frac{\mathrm{dy}}{\mathrm{dx}}=2 e^{-y}-1$ given that $y=0$ when $x=0$.

Sol. The given differential equation is

$$
\begin{aligned}
& (x+1) \frac{\text { ay }}{\text { az }}=2 e^{-y}-1 \\
& \text { ay } 2 \\
& 2 \\
& -\mathrm{e}^{\mathrm{y}} \\
& \text { or }(x+1) \text { az }=\mathrm{e}^{\mathrm{y}}-1= \\
& \text { Cross-multiplying, }(x+1) e^{y} d y=\left(2-e^{y}\right) d x \\
& \text { Separating variables, } \quad \frac{e^{y} a y}{2-e^{y}}=\frac{a z}{z+1} \\
& \text { Integrating both sides, } \int \frac{e^{y}}{2-e^{y}} \quad d y=\int \frac{1}{z+1} d x \\
& \text { Put } e^{y}=t . \quad \therefore \quad e^{y}=\frac{\text { at }}{\text { ay }} \Rightarrow e^{y} d y=d t \\
& \therefore \quad \int \overline{2-t}=\log |x+1| \\
& \log 12-t \mid \\
& \text { or } \quad \frac{\log \mid}{-1}=\log |x+1|+c \\
& \text { Putting } t=e^{v},-\log \left|2-e^{y}\right|=\log |x+1|+c \\
& \text { or } \log |x+1|+\log \mid \text { ESUET } c \\
& \text { or }
\end{aligned}
$$

or

$$
\left|(x+1)\left(2-e^{y}\right)\right|=e^{-c}
$$

or $\quad(x+1)\left(2-e^{y}\right)= \pm e^{-c}$
or
$(x+1)\left(2-e^{y}\right)=\mathrm{C}$ where $\mathrm{C}= \pm e^{-c} \ldots(i)$
When $x=0, y=0$ (given)
$\therefore \quad$ From $(i),(1)(2-1)=C \quad$ or $\quad C=1$
Putting $\mathrm{C}=1$ in (i) the required particular solution is $(x+1)\left(2-e^{y}\right)=1$.
Note. The particular solution may be written as

$$
2-e^{y}=\frac{1}{z+1} \quad \text { or } \quad e^{y}=2-\frac{1}{z+1}=\frac{2 z+1}{z+1}
$$

or $\log e^{y}=\log \left(\frac{|2 z+1|}{z+1}\right) \quad$ or $\quad y=\log \left(\frac{|2 z+1|}{z+1}\right)$
$\left(\because \log e^{y}=y^{\log e}=y\right.$ as $\left.\log e=1\right)$
which expresses y as an explicit function of x.
15. The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20,000 in 1999 and 25,000 in the year 2004, what will be the population of the village in 2009?
Sol. Let P be the population of the village at time t. According to the question, Rate of increase of population of the village is proportional to the number of inhabitants.
$\Rightarrow \quad \frac{\mathrm{aP}}{\mathrm{at}}=k \mathrm{P}$ (where $k>0$ because of increase, is the constant of proportionality)
$\Rightarrow d \mathrm{P}=k \mathrm{P} d t \quad \Rightarrow \quad \frac{\mathrm{a} \mathrm{P}}{\mathrm{P}}=k d t$
Integrating both sides, $\int \frac{1}{\mathrm{P}} d \mathrm{P}=k \int 1 d t$
\Rightarrow

$$
\begin{equation*}
\log \mathrm{P}=k t+c \tag{i}
\end{equation*}
$$

To find c : Given: Population of the village was $P=20,000$ in the year 1999.

Let us take the base year 1999 as $t=0$.
Putting $t=0$ and $\mathrm{P}=20000$ in (i), $\log 20000=c$
Putting $c=\log 20000$ in (i), $\log \mathrm{P}=k t+\log 20000$
$\therefore \log \mathrm{P}-\log 20000=k t$
$\Rightarrow \quad \log \frac{P}{20000}=k t$

To find k : Given: $\mathrm{P}=25000$ in the year 2004
i.e., \quad when $t=2004-1999=5$

Putting $\mathrm{P}=25000$ and $t=5$ in (ii),

$$
\log \frac{25000}{20000}-5 k \quad \rightarrow 5 k=\log \frac{\simeq}{4} \Rightarrow k=\frac{\dot{-}}{5} \text { lo } \frac{5}{4}
$$

Putting $k=\frac{1}{5} \log \underline{5}$ in (ii), log $\xrightarrow{P}=\left.4^{1} \log \underline{5}\right|_{t}$
4 DSCUET20000 (5 4)
To find the population in the year 2909 ,
i.e., when $t=2009-1999=10$,

Putting $\quad t=10$ in (iii),
$\log \frac{P}{20000}=\left(\frac{1}{5} \log \frac{5}{4}\right) \times 10$

$$
\begin{aligned}
& \left.=2 \log \frac{5}{4}=\log \left(\frac{5}{4}\right)^{2}\right)^{2}=\log \frac{25}{16} \\
20000 & =\frac{25}{16} \\
\Rightarrow \quad P & =\frac{25}{16} \times 20000=25 \times 1250=31250 .
\end{aligned}
$$

16. Choose the correct answer:

The general solution of the differential equation

$$
\frac{y d x-x d y}{y}=0 \text { is }
$$

(A) $x y=C$
(B) $x=C y^{2}$
(C) $y=C x$
(D) $y=C x^{2}$

Sol. The given differential equation is $y a z-z$ ay $=0$ y
Cross-multiplying, $\quad y d x-x d y=0$
$\Rightarrow \quad y d x=x d y$
Separating variables,

$$
\frac{\mathrm{az}}{\mathrm{z}}=\frac{\mathrm{ay}}{\mathrm{y}}
$$

Integrating both sides, $\log |x|=\log |y|+\log |c|$
$\Rightarrow \log |x|=\log |c y| \quad \Rightarrow|x|=|c y|$
$\Rightarrow \quad x= \pm c y \quad \Rightarrow \quad y= \pm \frac{1}{c} x$
or $y=\mathrm{C} x$ where $\mathrm{C}= \pm \frac{1}{\mathrm{C}}$
which is the required solution.
\therefore Option (C) is the correct answer.
17. The general solution of a differential equation of the type $\frac{\mathrm{dx}}{\mathrm{dy}}+\mathrm{P}_{1} \boldsymbol{X}=\mathrm{Q}_{1}$ is
(A) $y e^{\int P_{1} d y}=\int\left(\mid Q_{1} \mathrm{e}^{\int P_{1} d y}\right) d \boldsymbol{d}+C$
(B) $\begin{aligned} & y \cdot e^{\int P_{1} d x}=\int_{P d y}^{(}\left(\mid Q_{1} e^{\int P_{1} d x}\right) d x+C \\ &\left.Q e^{\int P_{1} d y}\right)\end{aligned}$
(C) $x e^{\int_{1}}=\int|(1 \quad)| d y+C$
(D) $\mathrm{xe}^{\int_{1}^{\mathrm{Pdx}}}=\int l^{\left(Q \mathrm{e}^{\int \mathrm{P}_{1} \mathrm{dx}}\right)}{ }^{1}$ DS Academy

Sol. We know that general solution of differential equation of the type $\underline{\mathbf{a z}}+\mathrm{P} x=\mathrm{Q}$ is
ay
$x \cdot($ I.F. $)=\int \mathrm{Q}_{1}$ (I.F.) $d y+c$ where I.F. $=\mathrm{e}^{\int \mathrm{P}_{1} \text { ay }}$
$\therefore \quad x \mathrm{e}^{\int \mathrm{P}_{1} \text { ay }}=\int\left(\mathrm{Q}_{1} \mathrm{e}^{\int \mathrm{P}_{1} \mathrm{ay}}\right) d y+c$
\therefore Option (C) is the correct answer.
18. The general solution of the differential equation

$$
e^{x} d y+\left(y e^{x}+2 x\right) d x=0 \text { is }
$$

(A) $x e^{y}+x^{2}=C$
(B) $x e^{y}+y^{2}=C$
(C) $y e^{x}+x^{2}=C$
(D) $y e^{y}+x^{2}=\mathrm{C}$

Sol. The given differential equation is

$$
e^{x} d y+\left(y e^{x}+2 x\right) d x=0
$$

Dividing every term by $d x$,

$$
e^{x} \frac{\mathrm{ay}}{\mathrm{az}}+y e^{x}+2 x=0
$$

or

$$
e^{x} \frac{\mathrm{ay}}{\mathrm{az}}+y e^{x}=-2 x
$$

Dividing every term by e^{x} to make coefficient of $\frac{\text { ay }}{a z}$ unity,

$$
\begin{aligned}
& \frac{a y}{a z}+y==\frac{2 z}{} \text { (Standard form of linear differential equation) } \\
& \mathrm{e}^{z} \\
& \text { Comparing with } \frac{\mathrm{ay}}{\mathrm{az}}+\mathrm{Py}=\mathrm{Q} \text {, we have }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P} & =1 \text { and } \mathrm{Q}=\frac{-2 \mathrm{z}}{\mathrm{e}^{\mathrm{z}}} \\
\int \mathrm{P} d x & =\int 1 d x=x \\
\text { I.F. } & =\mathrm{e}^{\int \mathrm{Paz}}=e^{x}
\end{aligned}
$$

Solution is y (I.F.) $=\int \mathbf{Q}$ (I.F.) $d x+\mathrm{C}$
or $\quad y e^{x}=\int \frac{-2 z}{\mathrm{e}^{\mathrm{z}}} e^{x} d x+\mathrm{C}$
or $\quad y e^{x}=-2 \int \mathbf{z} d x+\mathrm{C} \quad$ or $\quad y e^{x}=-2 \frac{\mathrm{z}^{2}}{2}+\mathrm{C}$
or $\quad y e^{x}=-x^{2}+\mathrm{C} \quad$ or $y e^{x}+x^{2}=\mathrm{C}$
\therefore Option (C) is the correct answer.
CUET
Academy

[^0]: *Remark. To explain * in eqn. (ii)
 If all the terms in the solution of a D.E. involve logs, it is better to use $\log c$ or $\log |c|$ instead of c in the solution.

