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Exercise 5.1 

1. Prove that the function f (x) = 5x – 3 is continuous at x = 0, 
at x = – 3 and at x = 5. 

Sol. Given: f (x) = 5x – 3 ...(i) 
Continuity at x = 0 

lim f (x) 
x  0 

lim (5x  3) 
x  0 

(By (i)) 

Putting x = 0, = 5(0) – 3 = 0 – 3 = – 3 
Putting x = 0 in (i), f (0) = 5(0) – 3 = – 3 

 lim f (x) 
x  0 

= f (0) (= – 3)     f (x) is continuous at x = 0. 

Continuity at x = – 3 

lim 
x   3 

f (x) =    lim 
x   3 

(5x  3) (By (i)) 

Putting x = – 3, = 5(– 3) – 3 = – 15 – 3 = – 18 
Putting x = – 3 in (i), f (– 3) = 5(– 3) – 3 = – 15 – 3 = – 18 

 lim 
x   3 

f (x) = f (– 3)(= – 18) 

   f (x) is continuous at x = – 3. 
Continuity at x = 5 

lim f (x) 
x  5 

= lim (5x  3) 
x  5 

(By (i)) 

Putting x = 5, 5(5) – 3 = 25 – 3 = 22 
Putting x = 5 in (i), f (5) = 5(5) – 3 = 25 – 3 = 22 

 lim (5x  3) 
x  5 

= f (5) (= 22)     f (x) is continuous at x = 5. 

= 
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x  c x  c 

x  c 

 

 
2. Examine the continuity of the function 

f (x) = 2x2 – 1 at x = 3. 
Sol.  Given: f (x) = 2x2 – 1 ...(i) 

Continuity at x = 3 

lim f (x) 
x  3 

=   lim (2x2  1) 
x  3 

[By (i)] 

Putting x = 3, = 2.32  – 1 = 2(9) – 1 = 18 – 1 = 17 
Putting x = 3 in (i), f (3) = 2.32  – 1 = 18 – 1 = 17 

 lim f (x) 
x  3 

= f (3) (= 17)    f (x) is continuous at x = 3. 

3. Examine the following functions for continuity: 

(a) f (x) = x – 5 (b) f (x) =  
    1     

, x  5 
x – 5  

(c) f (x) = 
x2  – 25 

,  x    –  5 (d)   f (x)  =    x  –  5  . 
x +5  

Sol. (a) Given: f (x) = x – 5 ...(i) 
The domain of f is R 

(...  f (x) is real and finite for all x  R) 
Let c be any real number (i.e., c  domain of f ). 

lim f (x) = lim (x  5) 

Putting x = c, = c – 5 

[By (i)] 

Putting x = c in (i), f (c) = c – 5 

 lim f (x) = f (c) (= c – 5) 

 f is continuous at every point c in its domain (here R). 
Hence f is continuous. 

Or 

Here f (x) = x – 5 is a polynomial function. We know that 
every polynomial function is continuous (see note below). 
Hence f (x) is continuous (in its domain R) 
Very important Note. The following functions are 
continuous (for all x in their domain). 
1. Constant function 
2. Polynomial function. 

3.Rational  function 
 f (x) 

g(x) 
where   f   (x)   and   g(x)   are 

polynomial functions of x and g (x)  0. 
4. Sine function ( sin x). 
5. cos x. 6. ex. 
7. e– x. 8. log x (x > 0). 



Class 12 Chapter 5 - Continuity and Differentiability 

 3 

 

  Call Now For Live Training 93100-87900 

9. Modulus function. 

(b) Given: f (x) =  
   1    

, x  5 ...(i) 
x  5 

Given: The domain f is R – (x  5)    i.e.,    R – {5} 
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(...   For x = 5, f (x) =  
   1 

 
x  5 

= 
 1  

5  5 
=  

1  
 

0 

   5  domain of f ) 

Let c be any real number such that c  5 

lim f (x) = lim   
   1 

 [By (i)] 

x  c x  c    x  5 

Putting x = c, = 
  1 

 
c  5 

Putting x = c in (i), f (c) =  
   1 

 
c  5 

 lim f (x) = f (c)  
 

   1   

x  c 
    

c  5 



 

 f (x) is continuous at every point c in the domain of f. 
Hence f is continuous. 

Or 

Here f (x) =  
   1    

, x  5 is a rational function 
x  5 


=

  Polynomial 1 of degree 0  
a n d    i t s    denominator

   
Polynomial (x  5) of degree 1 




 

i.e.,  (x – 5)  0 (...   x   5).  We  know  that  every  rational 
function is continuous (By Note below Solution of Q. No. 
3(a)). Therefore f  is continuous (in its domain R – {5}). 

(c) f (x) = 
x2  25 

, x  – 5 
x  5 

Here f (x) = 
x2   25 

,  x    –  5  is  a  rational  function  and 
 

denominator 
x  5 

x + 5  0 (... x  – 5). 

(In fact f (x) = x2  25 
, (x  – 5) = 

(x  5)(x  5) 
 

x  5 x  5 

= x – 5, (x  – 5) is a polynomial function). We know that every 
rational function is continuous. Therefore f is continuous 
(in its domain R – {– 5}). 

Or 
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Proceed as in Method I of Q. No. 3(b). 
(d) Given: f (x) =  x – 5 

Domain of f (x) is R (...  f (x) is real and finite for all real 
x in (– , )) 

Here f (x) =  x – 5  is a modulus function. 

We know that every modulus function is continuous. 

(By Note below Solution of Q. No. 3(a)). Therefore f is 
continuous in its domain R. 
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x  n 

x  n 

x  n 


5, if 





1 1 

 

 
4. Prove that   the   function  f (x)   =   xn   is   continuous  at 

x = n where n is a positive integer. 
Sol.  Given: f (x) = xn where n is a positive integer .............................. (i) 

Domain of f (x) is R ( ....f (x) is real and finite for all real x) 

Here f (x) = xn, where n is a positive integer. 

We know that every polynomial function of x is a continuous 
function. Therefore, f is continuous (in its whole domain R) and 
hence continuous at x = n also. 

Or 

lim f (x) =   lim  xn [By (i)] 

Putting x = n, = nn 

Again putting x = n in (i), f (n) = nn 

 lim f (x) = f (n) (= nn)   f (x) is continuous at x = n. 

5. Is the function f defined by 

f (x) = 
x, if

 


x  1 

x > 1 

continuous at x = 0?, At x = 1?, At x = 2 ? 

 
Sol. Given: f (x) = 

x, if 


5, if 

x  1 ...(i) 

x  1 ...(ii) 

(Read Note (on continuity) before the solution of Q. No. 1 of this 
exercise) 

Continuity at x = 0 

Left Hand Limit = lim
        

f (x)  =    lim x [By (i)] 

x      0 x  0


(x  0–  x < slightly less than 0  x < 1) 

Putting x = 0, = 0 

Right hand limit = lim



x  0 
f (x) = lim




x  0 
x [By (i)] 

(x  0+   x is slightly greater than 0 say x  = 0.001      x < 1) 

Putting x = 0, lim



x  0 
f (x) = 0  lim




x  0 
f (x) = lim




x  0 
f (x) = 0 

 lim 
x  0 

f (x) exists and = 0 = f (0) 

(...   Putting x = 0 in (i), f (0) = 0) 

  f (x) is continuous at x = 0. 

Continuity at x = 1 
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x 

Left Hand Limit  = x
l

im

–
 f (x) = 

x
l

im

–
 x [By (i)] 

Putting x = 1, = 1 

Right Hand Limit = 
 
lim 

 
f (x) = 

 
lim

        
5 

 
Putting x = 1, 

 
lim




x  1 

x  1 1 

f (x) = 5 
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1 




2 – 

3,x 

 
 

 
x
l

im

–
 f (x)  lim




x  1 
f (x)  lim 

x  1 
f (x) does not exist. 

  f (x) is discontinuous at x = 1. 

Continuity at x = 2 

Left Hand Limit = lim



x  2 
f (x) = lim




x  2 
5 [By (ii)] 

(x  2 –  x is slightly < 2  x = 1.98 (say)  x > 1) 

Putting x = 2, = 5 

Right Hand Limit = lim
        

f (x)  =    lim 5 [By (ii)] 

x      2 x  2


(x  2 +  x is slightly > 2 and hence x > 1 also) 

Putting x = 2, = 5 

 lim



x  2 
f (x) = lim




x  2 
f (x) (= 5) 

 lim 
x  2 

f (x) exists and = 5 = f (2) 

(Putting x = 2 > 1 in (ii), f (2) = 5) 

  f (x) is continuous at x = 2 

Answer. f is continuous at x = 0 and x = 2 but not continuous 
at x = 1. 

Find all points of discontinuity of f, where f is defined by 
(Exercises 6 to 12) 

6. f (x) = 
2x + 3,

 


x  2 
.
 

x > 2 

Sol. Given: f (x) = 2x + 3,    x  2 ...(i) 

= 2x – 3    x > 2 ...(ii) 

To find points of discontinuity of f (in its domain) 

Here  f (x)  is  defined  for  x   2    i.e.,    on (– , 2] 

and also for x > 2 i.e., on (2, ) 

 Domain of f is (– , 2]  (2, ) = (– , ) = R 

By (i), for all x < 2 (x = 2 being partitioning point can’t be mentioned  
here) f (x) = 2x + 3 is a polynomial  and hence continuous. 

By (ii), for all x > 2, f (x) = 2x – 3 is a polynomial and hence continuous. 
Therefore f (x) is continuous on R – {2}. 

Let us examine  continuity  of f at partitioning  point 
x = 2 

Left Hand Limit    = lim



x  2 
f (x) = lim




x  2 
(2x + 3) [By (i)] 

Putting x = 2, = 2(2) + 3 = 4 + 3 = 7 
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2 

Right Hand Limit = 
lim




x  2 
f (x)  = 

x
l

im


 (2x – 3) [By (ii)] 

Putting x = 2, = 2(2) – 3 = 4 – 3 = 1 

 lim



x  2 
f (x)  lim




x  2 
f (x) 
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



x  3 





 
 

 lim 
x  2 

f (x) does not exist and hence f (x) is discontinuous at 

x = 2 (only). 

| x |+ 3, if x  – 3 

7. f (x) = 
 
– 2x, if – 3 < x < 3 . 

 6 x + 2, if x  3 

| x| 3, if x  – 3 ...(i) 

Sol. Given: f (x) = 
 

– 2x, if – 3  x  3 ...(ii) 

 6x  2, if x  3 ...(iii) 

Here f (x) is defined for x  – 3     i.e.,    (– , – 3] and also for 
– 3 < x < 3 and also for x  3 i.e., on [3, ). 

 Domain of f is (– , – 3]  (– 3, 3)  [3, ) = (– , ) = R. 
By (i), for all x < – 3, f (x) = | x | + 3 = – x + 3 

(... x < – 3 means x is negative and hence  x  = – x) 

is a polynomial and hence continuous. 

By (ii), for all x (– 3 < x < 3) f (x) = – 2x is a polynomial and 
hence continuous. 

By (iii), for all x > 3, f (x) = 6x + 2 is a polynomial and hence 
continuous. Therefore, f (x) is continuous on R – {– 3, 3}. 

From  (i),  (ii)  and  (iii)  we  can  observe  that  x  =  –  3  and 
x = 3 are partitioning points of the domain R. 

Let us examine  continuity  of f at partitioning  point 
x = – 3 

Left Hand Limit = lim 



x   3 
f (x) = lim 




x   3 
(  x    +  3)  [By  (i)] 

(...   x  – 3–       x < – 3) 

= lim 



x   3 
(– x + 3) 

(...   x  – 3–         x < – 3 means x is negative and hence 

 x  = – x) 

Put x = – 3, = 3 + 3 = 6 

Right Hand Limit = lim 



x   3 
f (x) = lim 

 
(– 2x) [By (ii)] 

(...    x  – 3+  x > – 3) 

Putting x = – 3, = – 2(– 3) = 6 

 lim 



x   3 

f (x) = lim 



x   3 
f (x) (= 6) 

 lim 
x   3 

f (x) exists and = 6 
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Putting x = – 3 in (i), f (– 3) =  – 3  + 3 = 3 + 3 = 6 

 lim 
x   3 

f (x) = f (– 3) (= 6) 

   f (x) is continuous at x = – 3. 
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x 

x 

 

 
Now let us examine continuity of f at partitioning point 
x = 3 

Left Hand Limit = lim



x  3 
f (x) = lim




x  3 
(– 2x) [By (ii)] 

(...    x  3–         x < 3) 

Putting x = 3, = – 2(3) = – 6 

Right Hand Limit = lim



x  3 
f (x) = lim




x  3 
(6x + 2)  [By (iii)] 

(...    x  3+       x > 3) 

Putting x = 3,   = 6(3) + 2 = 18 + 2 = 20 

 lim



x  3 
f (x)  lim




x  3 
f (x) 

 lim 
x  3 

f (x) does not exist and hence f (x) is discontinuous at 

x = 3 (only). 
| x|

, if
 
 

x  0 

8. f (x) = 



   0, if 

. 

x = 0 

Sol. Given: f (x) = 
|x| 

if x  0 

[i.e., =  
x  

= 1   if   x > 0  (... For x > 0,  x   = x) 
 

and = – 
x 
x = – 1 if x < 0 (... For x < 0,  x  = – x) 

i.e., f (x) = 1 

= – 1 

if 

if 

x > 0 

x < 0 

...(i) 

...(ii) 
= 0 if x = 0 ...(iii) 

Clearly domain of f (x) is R (...    f (x) is defined for x > 0, for x < 0 

and also for x = 0) 

By (i), for all x > 0, f (x) = 1 is a constant function and hence 

continuous. 

By (ii), for all x < 0, f (x) = – 1 is a constant function and hence 

continuous. 

Therefore f (x) is continuous on R – {0}. 

Let us examine continuity of f at the partitioning point x =0  

Left Hand Limit = lim



x  0 
f (x) = lim




x  0 
– 1 [By (ii)] 

. . 

 
Put x = 0, = – 1 

( . x  0–         x < 0) 

x 
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Right Hand Limit = lim



x  0 
f (x) = lim




x  0 
1 [By (i)] 

. . 

 
Put x = 0, = 1 

( . x  0+         x > 0) 
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

   2  + 1,    ifx



 
 

 lim



x  0 
f (x)  lim




x  0 
f (x) 

 lim 
x  0 

f (x) does not exist and hence f (x) is discontinuous at 

x = 0 (only). 

Note. It may be noted that the function given in Q. No. 8 is 
called a signum function. 

 x   
,   if 

 
 

x < 0 

9. f (x) = 

 
Sol. Given: 


| x | 


 – 1, if 



. 

x  0 

  
x x 

f (x) = 
   


| x| 

,   if    x < 0 = 
 x

 = – 1    if    x < 0 ...(i) 

(...   For x < 0,  x  = – x) 
– 1 if   x  0 ...(ii) 

Here f (x) is defined for x < 0    i.e.,    on (– , 0) and also for x  0 

i.e., on [0, ). 

 Domain of f is (– , 0)  [0, ) = (– , ) = R. 

From (i) and (ii), we find that 

f (x) = – 1 for all real x (< 0 as well as  0) 

Here f (x) = – 1 is a constant function. 

We know that every constant function is continuous. 

 f is continuous (for all real x in its domain R) 

Hence no point of discontinuity. 

10.   f (x)  =  
 x + 1, if

 



x  1 
.
 

x <1  

 x  1, if x  1 ...(i) 

Sol. Given: 
x2  1,    if x  1 ...(ii) 

Here f (x)  is  defined  for  x    1  i.e.,  on  [1,  )  and  also  for  
x < 1 i.e., on (– , 1). 

Domain of f is (– , 1)  [1, ) = (– , ) = R 

By (i), for all x > 1, f (x) = x + 1 is a polynomial and hence 
continuous. 

By (ii), for all x < 1, f (x) = x2 + 1 is a polynomial and hence 
continuous. Therefore f is continuous on R – {1}. 

Let us examine continuity of f at the partitioning point 
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1 1 

x = 1. 

Left Hand Limit =   lim   f (x) =   lim 
x    – x  – 

(x2 + 1) [By (ii)] 
. . 

Putting x = 1, = 12  + 1 = 1 + 1 = 2 
( . x  1–        x < 1) 
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

1 

   
2  + 1,    ifx



x  

 
 

Right Hand Limit = lim   f (x) =   lim 
1 x  1 

(x + 1) [By (i)] 

(...   x  1+       x > 1) 

Putting x = 1, = 1 + 1 = 2 

 
x
l

im

–
 f (x) = lim




x  1 
f (x) (= 2) 

 lim 
x  1 

f (x) exists and = 2 

Putting x = 1 in (i), f (1) = 1 + 1 = 2 

 lim 
x  1 

f (x) = f (1) (= 2) 

  f (x) is continuous at x = 1 also. 

 f is be continuous on its whole domain (R here). 

Hence no point of discontinuity. 

11.   f (x)  =  
 x

3  – 3,    if
 



x  2 
.
 

x > 2 

 Sol. Given: f (x) = x3  3,    if x  2 ...(i) 


 x2  1,    if x  2 ...(ii) 

Here f (x) is defined for x  2 i.e., on 

(– , 2] and also for x > 2 i.e., on (2, ). 

 Domain of f is (– , 2]  (2, ) = (– , ) = R 

By (i), for all x < 2, f (x) = x3 – 3 is a polynomial and hence 

continuous. 

By (ii), for all x > 2, f (x) = x2  + 1 is a polynomial and hence 

continuous. 

 f is continuous on R – {2}. 

Let us examine continuity of f at the partitioning point x = 2. 

Left Hand Limit  = lim



x  2 
f (x) = lim




x  2 
(x3 – 3) [By (i)] 

(...    x  2–         x < 2) 

Putting x = 2, = 23 – 3 = 8 – 3 = 5 

Right Hand Limit = lim



x  2 
f (x) = lim




x  2 
(x2 + 1) [By (ii)] 

(...    x  2+         x > 2) 

Putting x = 2, = 22 + 1 = 4 + 1 = 5 
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 lim



x  2 

f (x) = lim



x  2 
f (x) (= 5) 

 lim 
x  2 

f (x) exists and = 5 

Putting x = 2 in (i), f (2) = 23 – 3 = 8 – 3 = 5 

 lim 
x  2 

f (x) = f (2) (= 5) 
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1 1 

1 

   
– 5 ifx 







 

 
 f (x) is continuous at x = 2 (also). 

Hence no point of discontinuity. 

12.   f (x)  =  
x10  – 1,    if

 x  1 
.
 


    

x2 , if x > 1 

 Sol. Given: f (x) = x10  1,    if x  1 ...(i) 


    

x2, if x  1 ...(ii) 

Here f (x)  is  defined  for  x    1  i.e.,  on  (–  ,  1]  and  also  for 

x > 1 i.e., on (1, ). 

 Domain of f is (– , 1]  (1, ) = (– , ) = R 

By (i), for all x < 1, f (x) = x10 – 1 is a polynomial and hence 

continuous. 

By (ii), for all x > 1, f (x) = x2 is a polynomial and hence 

continuous. 

 f (x) is continuous on R – {1}. 

Let us examine continuity of f at the partitioning point 
x = 1. 

Left Hand Limit = 
x
l

im

–
 f (x) = 

x
l

im

–
 (x10 – 1) [By (i)] 

(...   x  1–    x < 1) 

Putting x = 1, = (1)10 – 1 = 1 – 1 = 0 

Right Hand Limit = lim



x  1 
f (x) = lim




x  1 
x2 [By (ii)] 

Putting x = 1, = 12 = 1 

 
x
l

im

–
 f (x)  lim




x  1 
f (x) 

 lim 
x  1 

f (x) does not exist. 

Hence the point of discontinuity is x = 1 (only). 

13. Is the function defined by 

f (x) = 
 x +5  if 



a continuous function? 

Sol. Given: f (x) = 

x  1 

x > 1 

 
x  5,   if 


x  5,   if 

 
 
 

x  1 ...(i) 

x  1 ...(ii) 

Here f (x)  is  defined  for  x    1  i.e.,  on  (–  ,  1]  and  also  for 
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x > 1 i.e., on (1, ) 

 Domain of f is (– , 1]  (1, ] = (– , ) = R. 

By (i), for all x < 1, f (x) = x + 5 is a polynomial and hence 

continuous. 

By (ii), for all x > 1, f (x) = x – 5 is a polynomial and hence 

continuous. 



Class 12 Chapter 5 - Continuity and Differentiability 

 20 

 

  Call Now For Live Training 93100-87900 

1 1 

1 









1 1 

 

 
   f is continuous on R – {1}. 

Let us examine continuity at the partitioning point x = 1. 

Left Hand Limit    = 
x
l

im

–
 f (x) = 

x
l

im

–
 (x + 5) [By (i)] 

Putting x = 1, = 1 + 5 = 6 

Right Hand Limit = lim



x  1 
f (x) = lim




x  1 
(x – 5) [By (ii)] 

Putting x = 1, = 1 – 5 = – 4 

 
x
l

im

–
 f (x)  lim




x  1 
f (x) 

 lim 
x  1 

f (x) does not exist. 

Hence f (x) is discontinuous at x = 1. 

  x = 1 is the only point of discontinuity. 

Discuss the continuity of the function, f, where f is defined by 

3, if 0  x  1 

14. f (x) = 

4, if 1 < x < 3 . 
5, if 3  x  10 

 
Sol. Given: f (x) = 

3, if 0  x  1 ...(i) 


4, if 1  x  3 ...(ii) 
5, if 3  x  10 ...(iii) 

From (i), (ii) and (iii), we can see that f (x) is defined in [0, 1] 

 (1, 3)  [3, 10] i.e., f (x) is defined in [0, 10]. 

   Domain of f (x) is [0, 10]. 

From (i), for 0  x < 1, f (x) = 3 is a constant function and hence 

is continuous for 0  x < 1. 

From (ii), for  1  < x  <  3,  f (x) = 4 is a constant function and hence 

is continuous for 1 < x < 3. 

From (iii), for 3 <  x  10, f (x) = 5 is  a constant function and 

hence is continuous for 3 < x  10. 

Therefore, f (x) is continuous in the domain [0, 10] – {1, 3}. 

Let us examine continuity of f at the partitioning point 
x = 1. 

Left  Hand  Limit  =   
x
l

im

–
 f (x) =   lim 

x    – 
3 [By (i)] 

(...   x  1–        x < 1) 

Putting x = 1; = 3 

Right Hand Limit = 

 
lim




x  1 

 
f (x) = 

 
lim




x  1 

 
4 [By (ii)] 

(...   x  1+    x > 1) 
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1 

Putting x = 1, = 4 

 
x
l

im

–
 f (x)  lim




x  1 
f (x) 



Class 12 Chapter 5 - Continuity and Differentiability 

 22 

 

  Call Now For Live Training 93100-87900 







 
 

 lim 
x  1 

f (x) does not exist and hence f (x) is discontinuous at 

x = 1. 

Let us examine continuity of f at the partitioning point x = 3. 

Left Hand Limit = lim



x  3 
f (x) = lim




x  3 
4 [By (ii)] 

(...    x  3–         x < 3) 

Putting x = 3, = 4 

Right Hand Limit = 

 
Putting x = 3; = 5 

 
lim




x  3 

 
f (x) = 

 
lim




x  3 

 
5 [By (iii)] 

(...    x  3+    x > 3) 

 lim
        

f (x)      lim f (x) 

x      3 x  3


 lim 
x  3 

f (x) does not exist and hence f (x) is discontinuous at 

x = 3 also. 
 x = 1 and x = 3  are  the  two  points  of  discontinuity  of the 
function f in its domain [0, 10]. 

2x, if x < 0 

15. f (x) = 
 

0, if 0  x  1 . 

4x, if x > 1 

Sol. The domain  of f is {x  R : x < 0}  {x  R : 0  x  1} 
 {x  R : x > 1} = R 

x = 0 and x = 1 are partitioning points for the domain of this 
function. 

For all x < 0, f (x) = 2x is a polynomial and hence continuous. 

For 0 < x < 1, f (x) = 0 is a constant function and hence 
continuous. 

For all x > 1, f (x) = 4x is a polynomial and hence continuous. 
Let us discuss continuity at partitioning point x = 0. 

At x = 0, f (0) = 0 [... f (x) = 0 if 0  x  1] 

lim



x  0 
f (x) = lim




x  0 
2x[... x  0–  x < 0 and f (x) = 2x for x < 0] 

= 2 × 0 = 0 

lim



x  0 
f (x) = lim

   
0[...  x    0+     x  >  0  and  f (x)  =  0  if  0    x    1] 

x  0 

     l im



x  0 
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= 0 

f (x) = 
 

lim



x  0 

 
f (x) 
= 0 

Thus lim 
x  0 

f (x) = 0 = f (0) and hence f is continuous at 0. 

Let us discuss continuity at partitioning point x = 1. 

At x = 1, f (1) = 0 [... f (x) = 0 if 0  x  1] 
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1 

1 









1 

 
 

x
l

im

–
 f (x) = 

x
l

im

–   
0    [x    1–    x  <  1  and  f (x)  =  0  if  0    x    1] 

 
lim

    
f (x)  = 

x  1 

= 0 

lim



x  1 

 
4x  [x  1+  x > 1 and f (x) = 4x for x > 1] 

= 4 × 1 = 4 

The left and right hand limits of f at x  = 1 do not coincide i.e., 
are not equal. 

 lim 
x  1 

f (x) does not exist and hence f (x) is 

discontinuous at x = 1. 
Thus f is continuous at every point in the domain except x = 1. Hence, 

f is not a continuous function and x  =  1  is  the  only  point of 
discontinuity. 

– 2, if x  – 1 

16. f (x) = 
 

2x, if – 1 < x  1 . 

 2, if x > 1 

– 2, if 
 

x  – 1 ...(i) 

Sol. Given: f (x) = 
 

2x, if – 1  x  1 ...(ii) 

 2, if x  1 ...(iii) 

From (i), (ii) and (iii) we can see that f (x) is defined for 

{x : x  – 1}  {x : – 1 < x  1}  {x : x > 1} 

i.e.,     for (– , – 1]  (– 1, 1]  (1, ) = (– , ) = R 

  Domain of f (x) is R. 

From (i), for x < – 1, f (x) = – 2 is a constant function and hence 

is continuous for x < – 1. 

From (ii), for – 1 < x < 1, f (x) = 2x is a polynomial function and 

hence is continuous for – 1 < x < 1. 

From (iii), for x > 1, f (x) = 2 is a constant function and hence is 

continuous for x > 1. 

Therefore f (x) is continuous in R – {– 1, 1}. 

Let us examine continuity of f at the  partitioning 

point x = – 1. 

Left Hand Limit = 
x 
lim

   
–
 f (x) = 

x 
lim

 1– 
(– 2) [By (i)] 

 Putting x = – 1,   = – 2 
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(...    x  – 1–         x < – 1) 

Right Hand Limit = lim 



x   1 
f (x) = lim 




x   1 
2x (By (ii)] 

 
Putting x = – 1,    = 2(– 1) = – 2 

(...   x  – 1+        x > – 1) 

 
x 
lim

 1– 
f (x) = lim 




x   1 

f (x) (= – 2)  lim 
x   1 

f (x) exists and = – 2. 

Putting x = – 1 in (i), f (– 1) = – 2 
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

1 

 
+ 3,  

ifbx 







x  

 
 

 lim 
x   1 

f (x) = f (– 1) (= – 2)     f (x) is continuous at x = – 1. 

Let us examine continuity of f at the partitioning point x =1  

Left Hand Limit = 
x
l

im

–
 f (x) = lim

–
 (2x) [By (ii)] 

1 

 
Putting x = 1, = 2(1) = 2 

x  1 

(... x  1–
    x < 1) 

Right Hand Limit = lim

 f (x) = lim 2 [By (iii)] 

x     1 

 
Putting x = 1,  = 2 

x  1


(... x  1+        x > 1) 

 
x
l

im

–
 f (x) = lim




x  1 
f (x) (= 2)  lim 

x  1 
f (x) exists and = 2. 

Putting x = 1 in (ii), f (1) = 2(1) = 2 

 lim 
x  1 

f (x) = f (1) (= 2)    f (x) is continuous at x = 1 also. 

Therefore f is continuous for all x in its domain R. 

17. Find the relationship between a and b so that the function 
f defined by 

f (x) = 
ax + 1, if 


is continuous at x = 3. 

x  3 

x >3  

Sol. Given: f (x) = 
ax  1 if 


bx  3 if 

x  3 ...(i) 

x  3 ...(ii) 

and f (x) is continuous at x = 3. 

Left Hand Limit   = lim   f (x) =   lim 
3 x  3 

(ax + 1) [By (i)] 

(x  3–         x < 3) 

Putting x = 3, = 3a + 1 ...(iii) 

Right Hand Limit = lim



x  3 
f (x) = lim




x  3 
(bx + 3) [By (ii)] 

(...    x  3+    x > 3) 

Putting x  = 3, = 3b + 3 ...(iv) 
Putting x = 3 in (i), f (3) = 3a + 1 ...(v) 
Because f (x) is continuous at x = 3 (given) 

 lim
        

f (x)  =    lim f (x) = f (3) 

x      3 x  3

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

Putting values from (iii), (iv) and (v) we have 
3a + 1 = 3b + 3 (= 3a + 1) 

   3a + 1 = 3b + 3 [...  First and third members are equal] 
 3a = 3b + 2 

Dividing by 3, a = b + 
2 

. 
3 

18. For what value of  is the function defined by 

 f (x) = (x2 – 2x), if x  0 

  
4x + 1, if x > 0 
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

 

 
continuous at x = 0? What about continuity at x = 1? 

 Sol. Given: f (x) = (x2 – 2x), if x  0 ...(i) 

 
4 x  1, if x  0 ...(ii) 

Given: f (x) is continuous at x = 0. To find . 

Left Hand Limit   = lim



x  0 
f (x) =  lim




x  0 
(x2 – 2x) [By (i)] 

. . 

Putting x = 0, = (0 – 0) = 0 
( . x  0–         x < 0) 

Right Hand Limit = lim

 f (x) = lim


 (4x + 1)   [By (ii)] 

0 

 
Putting x = 0, = 4(0) + 1 = 1 

x  0 

(... x  0+
    x > 0) 

 lim 
x  0 

f (x) (= 0)  lim 
x  0 

f (x) (= 1) 

 lim 
x  0 

f (x) does not exist whatever  may be 
. . 

( . Neither left limit nor right limit involves ) 

  For no value of , f is continuous at x = 0. 

To examine continuity of f at x = 1 

Left Hand Limit = lim 
x  1 

f (x) = lim 
x  1 

(4x + 1) [By (ii)] 

(x  1–         x is slightly < 1 say x = 0.99 > 0) 

Put x = 1, = 4 + 1 = 5 

Right Hand Limit = lim 
x  1 

f (x) = lim 
x  1 

(4x + 1) [By (ii)] 

(x  1+      x is slightly > 1 say x = 1.1 > 0) 

Put x = 1, = 4 + 1 = 5 

 lim 
x  1 

f (x) = lim 
x  1 

f (x) (= 5) 

 lim 
x  1 

f (x) exists and = 5 
. . 

Putting x = 1 in (ii) ( . 1 > 0), f (1) = 4 + 1 = 5) 

 lim 
x  1 

f (x) = f (1) (= 5) 

x 

 

– – 

 

– 
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  f (x) is continuous at x = 1 (for all real values of ). 

19. Show that the function defined by g(x) = x – [x] is 
discontinuous at all integral points. Here [x] denotes the 
greatest integer less than or equal to x. 

Sol. Given: g(x) = x – [x] 

Let x = c be any integer   (i.e.,   c  Z (= I)) 

Left Hand Limit =   lim 
x  c 

Put x = c – h, h  0+
 

g(x) =   lim 
x  c 

(x – [x]) 

=   lim 
h  0 

(c – h – [c – h]) c – 1 c – h   c 

  

 


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. . 



lim 

 
 

=   lim 
h  0 

(c – h – (c – 1)) 
. . + 

[ . If c  Z and h  0 , then [c – h] = c – 1] 

=   lim 
h  0 

(c – h – c + 1) = lim 
h  0 

(1 – h) 

Put h = 0, = 1 – 0 = 1 

Right Hand Limit =   lim 
x  c 

Put x = c + h, h  0+
 

 
g(x) =   lim 

x  c 

 
(x – [x]) 

= lim

 (c + h – [c + h]) =   lim

      
(c + h – c) 

h  0 

( . 
h  0 

If c  Z and h  0+, then [c + h] = c) 

=  lim   h 
h  0 

Put h = 0; = 0 

 lim 
x  c 

g(x)    lim 
x  c

g(x) 
 

c c + h 

 

c + 1 


x  c 

g(x) does not exist and hence g(x) is discontinuous at 

x = c (any integer). 

  g(x) = x – [x] is discontinuous at all integral points. 

Very Important Note. If two functions f and g are continuous in 
a common domain D, 

then (i) f + g (ii) f – g (iii) fg are continuous in the same domain D. 

(iv)  
 f 

g 
is also continuous at all points of D except those where 

g(x) = 0. 

20. Is the function f (x) = x2 – sin x + 5 continuous at x = ? Sol. 

Given: f (x) = x2 – sin x + 5 = (x2 + 5) – sin x 

= g(x) – h(x) ...(i) 

where  g(x) = x2 + 5 and h(x) = sin x 

We know that g(x) = x2 + 5 is a polynomial function and hence is 

continuous (for all real x) 

Again h(x) = sin x being a sine function is continuous (for all real x) 

 By (i) f (x) = x2 – sin x + 5 = g(x) – h(x) 

being the difference of two continuous functions is also continuous 

for all real x (see Note above) and hence continuous at x = ( R) 

also. 



 

 


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lim lim 

Or 

Given: f (x) = x2 – sin x + 5 ...(i) 

To examine continuity at x = 


x    

f (x)   = 
x    

(x2 – sin x + 5) [By (i)] 

Putting x = , = 2 – sin  + 5 
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lim 

x  c 

lim 

lim lim 

 

 
[... 

= 2 + 5 

sin  = sin 180° = sin (180° – 0°) = sin 0° = 0] 

Again putting x =  in (i), f () = 2 – sin  + 5 

= 2 – 0 + 5 = 2 + 5 


x    

f (x) = f () 

  f (x) is continuous at x = . 

21. iscuss the continuity of the following functions: 

(a) f (x) = sin x + cos x (b) f (x) = sin x – cos x 

(c) f (x) = sin x . cos x. 

Sol. We know that sin x is a continuous function for all real x 

Also we know that cos x is a continuous function for all real x 
(see solution of Q. No. 22(i) below) 

  By Note at the end of solution of Q. No. 19, 

(i) their sum function f (x) = sin x + cos x is also continuous 
for all real x. 

(ii) their difference function f (x) = sin x – cos x is also 
continuous for all real x. 

(iii) their product function f (x) = sin x . cos x is also continuous 
for all real x. 

Note. To find lim  f (x), we can also start with putting x = c + h 

where h  0 (and not only h  0+) 


x  c 

f (x) = lim 
h  0 

f (c + h). 

(Please note that this method of finding the limits makes us find 

both  lim 
x  c 

f (x) and   lim 
x  c 

f (x) simultaneously). 

22. Discuss the continuity of the cosine, cosecant, secant and 
cotangent functions. 

Sol.    (i)  Let f (x) be the cosine function 

i.e., f (x) = cos x ...(i) 

Clearly,  f (x)  is   real   and   finite  for   all   real   values  of  
x    i.e.,    f (x)  is  defined  for  all  real  x.  Therefore  domain  of f 
(x) is R. 

Let x = c  R. 

 
x  c 

f (x) = 
x  c 

cos x 

Put x = c + h where h  0 

= lim 
h  0 

cos (c + h) = lim 
h  0 

(cos c cos h – sin c sin h) 

 
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lim 

Putting h = 0, = cos c cos 0 – sin c sin 0 

= cos c (1) – sin c (0) 

= cos c 


x  c 

f (x) = cos c 
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lim 

sin x 

 
 

Putting x = c in (i), f (c) = cos c 


x  c 

f (x) = f (c) (= cos c) 

  f (x) is continuous at (every) x = c  R 

   f (x) = cos x is continuous on R. 

(ii) Let f (x) be cosecant function 

i.e.,  f (x) = cosec x =  
   1 

 

f (x) is not finite i.e.,     

when sin x = 0   i.e.,   when x = n, n  Z. 

 Domain of f (x) = cosec x is D = R – {x = n; n  Z}. 

(... f (x) is real and finite V x  D). 

Now f (x) = cosec x =  
   1 

 
sin x 

 g(x) 
= 

h(x) 
...(i) 

Now g(x) = 1 being constant function is continuous  on domain 
D and h(x) = sin x is non-zero and continuous on Domain D. 

 


   1    


 g(x) 
Therefore by (i), f (x) = cosec x     sin x h(x) 

 is continuous 
 

on domain D = R – {x = n, n  Z} 

(Also read Note at the end of solution of Q. No. 19). 

(iii) Let f (x) be the secant function 

i.e.,f (x) = sec x =  
   1 

 
cos x 

f (x) is not finite i.e.,    



When cos x = 0   i.e.,   when x = (2n + 1) 
2 

, n  Z. 

  Domain of f (x) = sec x is 


D = R – {x = (2n + 1) 

2 
; n  Z} 

Now f (x) = sec x =  
   1 

 
cos x 

=
 g(x) 

h(x) 
...(i) 

Now g(x) = 1 being constant function is continuous  on domain 
D and h(x) = cos x is non-zero and continuous on domain D. 

Therefore by (i), f (x) = sec x  
 

   1    


 g(x)  is continuous 
    

cos x h(x) 



 

on domain D = R – {x : x = (2n + 1) 
 

; n  Z}. 
2 

(iv) Let f (x) be the cotangent function i.e., f (x) = cot x =
 cos x 

. 
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f (x) is not finite i.e.,     
sin x 
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sin x 

x 



 
 

When sin x = 0   i.e.,   when x = n, n  Z. 

    Domain of f (x) = cot x is 

D = R – {x = n; n  Z} 

Now f (x) = cot x = 
cos x   

= 
g(x) 

 

h(x) 
...(i) 

Now g(x) = cos x being cosine function is continuous on D 
and is non-zero on D. 

Therefore by (i), f (x) = cot x   
cos x 


 g(x) 




is continuous     
sin x h(x) 




 
on domain D = R – {x : x = n, n  Z}. 

23. Find all points of discontinuity of f, where 
 sin x 

, if
 x < 0 

f (x) =  
   

x . 

 x + 1, if    x  0 

Sol. The domain of f = {x  R : x < 0}  {x  R : x  0} = R 

x = 0 is the partitioning point of the domain of the given function. 

For all x < 0, f (x) = 
sin x

 (given) 

Since sin x and x are continuous for x < 0 (in fact, they are 
continuous for all x) and x  0 

 f is continuous when x < 0 

For all x > 0, f (x) = x + 1 is a polynomial and hence continuous. 

 f is continuous when x > 0. 

Let us discuss the continuity of f (x) at the partitioning 
point x = 0. 

. .
 

At x = 0, f (0) = 0 + 1 = 1 [ . f (x) = x + 1 for x  0] 

lim 
x  0 

f (x) =  lim 
x  0 

sin x 

x 


∵ x  0  x  0 and f (x)  

sin x 
for x  0







lim 

x  0 





= 1  

f (x) =  lim 
x  0 

 

 
(x + 1) 

x 




∵ x  0



= 0 + 1 = 1 

 x  0 and f (x)  x  1 for x  0

Since lim 
x  0 

f (x)= lim 
x  0 

f (x) = 1   lim 
x  0 

f (x) = 1 





 

 
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Thus 
lim 
x  0 

f (x) = f (0) and hence f is continuous at x = 1. 

Now f is continuous at every point in its domain and hence f is 
a continuous function. 
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x 

x 







 

 
24. Determine if f defined by 

 
x2 sin 

1 
,   if 

 

 x  0 

f (x) = 




x 

0, if 

 
x = 0 

is a continuous function? 

Sol.  For all x  0, f (x) = x2 sin  
1
 

x 

 
being the product function of two 

continuous functions x2 (polynomial function) and sin  
1
 (a sine 

function) is continuous for all real x  0. 

Now let us examine continuity at x = 0. 

lim 
x  0 

f (x) = lim 
x  0 

x2 sin  
1
 

Putting x = 0 = 0 × A finite quantity between – 1 and 1 = 0 

∵ sin  

1 
( sin ) always lies between  1 and 1





 x 




Also f (x) = 0 at x = 0 i.e., f (0) = 0 

   lim 
x  0 

f (x) = f (0), therefore function f is continuous at 

 
x = 0 (also). 

Hence f (x) continuous on domain R of f. 

25. Examine the continuity of f, where f is defined by 

f (x) = 
sin x – cos x, if x  0 

.
 

 
– 1, if x = 0 

 Sol. Given: f (x) = sin x – cos x if x  0 ...(i) 

 
– 1 if x  0 ...(ii) 

From (i), f (x) is defined for x    0  and  from  (ii)  f (x)  is  defined 
for x = 0. 

 Domain of f (x) is {x : x  0}  {0} = R. 

From (i), for x  0, f (x) = sin x – cos x being the difference of two 

continuous functions sin x and cos x is continuous for all x  0. 
Hence f (x) is continuous on R – {0}. 

Now let us examine continuity at x = 0. 

lim 
x  0 

f (x)  = 
x
li

m (sin x – cos x) 
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0 

[By (i) as x  0 means x  0] 

Putting x = 0,  = sin 0 – cos 0 = 0 – 1 = – 1 

From (ii) f (x) = – 1 when x = 0 

i.e., f (0) = – 1 

 lim 
x  0 

f (x) = f (0) (= – 1) 

  f (x) is continuous at x = 0 (also). 
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   



 

 
Hence f (x) is continuous on domain R of f. 

Find the values of k so that the function f is continuous at the 
indicated point in Exercises 26 to 29. 

 
26. f (x) = 

 k cos x 
,   if

 
  – 2x 

x  

2 

at x =
  

. 




 3, if x = 

 2 

2 

Sol.  Left Hand Limit = lim



x  
2

 

f (x) = lim



x  
2

 

k cos x 

  2x 

Put x = 
 

– h  where h   0+ 

2 

k cos 
  

– h 



=   lim 

 2

  
=   lim    k sin h  

h  0  2 
  

– h 

 h  0     2h 

=   lim 


 2

 

k sin h 
 

 





= 
k 

× 
 

 

 
 

lim 

 
 

sin h k k 
 

   

h  0 2h 2 h  0
h 

= 
2 

× 1 = 
2

 ...(i) 

 
Right Hand Limit = lim

 


x  
2

 

 
f (x) = lim

 


x  
2

 

k cos x 

  2x 

Put x = 
 

+ h where h  0+ 

2 

k cos 
  

 h



=   lim 

 2

  
=   lim   k sin h    

=
 
 

lim  k sin h

h  0


  2 
  

 h

 h  0     2h h  0  2h 

 

= 
k 

× 
2 

 

 
lim 

h  0


 2

 

sin h 

h 




= 
k 

× 1 = 
2 

 
k 

...(ii) 
2 

Also f 
  


 2 

= 3 ...(iii) ...   


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   

f (x) = 3 when x =  
(given) 2 

Because f (x) is continuous at x = 
 

(given) 
2 

 
 lim 

x  
–

 

2 

 
f (x) = 

 
lim 

x  




2 

f (x) = f 
  



 2 

Putting values from (i), (ii), and (iii), 
k 

= 3   or    k = 6. 
2 
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

 
cos x,  if 





 
 

27.   f (x)  =   
kx2 ,    if    x  2 

at x = 2 . 
 

3, if   x > 2 

 
Sol. Given: f (x) = 

kx2,    if 

  3, if 

x  2 

x  2 

...(i) 

...(ii) 

Given: f (x) is continuous at x = 2. 

Left Hand Limit = lim

 f (x) = lim


 kx2 [By (i)] 

x  2 

 

Put x = 2, = k(2)2 = 4k 

x  2 

(... x  2–
    x is < 2) 

Right Hand Limit = 

 
Putting x = 2, = 3 

lim 
x  2 

f (x) = 

 
2 

lim 
x  2 

3 [By (ii)] 

(...    x  2+    x > 2) 

Putting x = 2 in (i) f (2) = k(2) = 4k. 
Because f (x) is continuous at x = 2 (given), 

therefore lim 
x  2 

f (x) = lim 
x  2 

f (x) = f (2) 

Putting values, 4k = 3 = 3     k =  
3 

. 
4 

28. f (x) = 
kx + 1, if

 


x    

x > 
at x =  . 

Sol. Given: f (x) = 
kx  1, if 
 

cos x, if 

x  

x    

...(i) 

...(ii) 

Given: f (x) is continuous at x = . 

Left Hand Limit =   lim

 f (x) =   lim


 (kx + 1) [By (i)] 

x    

 

Putting x = ,   = k + 1 

x    

(... x  –    x < ) 

Right Hand Limit =   lim

 f (x) =   lim


 cos x [By (ii)] 

x    x    

(... x  +    x > ) 

Putting x = ,   = cos  = cos 180° = cos (180° – 0) 
= – cos 0 = – 1 

Putting x =  in (i), f () = k + 1 
But f (x) is continuous at x =  (given), therefore 

lim 
x 


   



 

 


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


3x – 5, if 



f (x) =   lim 
x    

f (x) = f () 

Putting  values  k  +
. . 

1  =  –  1  =  k  +  1 
   k + 1 = – 1 [ . First and third members are same] 

 k = – 2      k = – 
2 

. 

29. f (x) = 
kx + 1,   if

 


x  5 
at x = 5 . 

x > 5 

Sol. Given: f (x) = 
 kx  1   if 


3x – 5  if 

x  5 ...(i) 

x  5 ...(ii) 


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5 









246 MATHEMATICS–XII 
 

Given: f (x) is continuous at x = 5. 

Left Hand Limit = lim 
x  5 

f (x) = lim 
x  5 

(kx + 1) [By (i)] 

Putting x = 5,  = k(5) + 1 = 5k + 1 

Right Hand Limit = lim 
x  5 

f (x) = lim 
x  5 

(3x – 5) [By (ii)] 

Putting x = 5, = 3(5) – 5 = 15 – 5 = 10 

Putting x = 5 in (i), f (5) = 5k + 1 

But f (x) is continuous at x = 5 (given) 

 lim 
x  5 

f (x) = lim 
x  5 

f (x) = f (5) 

Putting values 5k + 1 = 10 = 5k + 1 

  5k + 1 = 10      5k = 9      k =  
9 

. 

30. Find the values of a and b such that the function defined 
by 

 5, if x  2 

f (x) = 


ax + b, if 2 < x < 10 . 

   21, if x  10 

is a continuous function. 

 5 if x  2 ...(i) 

Sol. Given: f (x) = 


ax  b if 2  x  10 ...(ii) 

   21 if x  10 ...(iii) 

From (i), (ii) and (iii),  f (x) is defined for {x  2}   {2 <  x < 10} 

 {x  10} i.e., for (– , 2]  (2, 10)  [10, ) i.e., for (– , ) i.e., 

on R.   Domain of f (x) is R. 

Given: f (x) is a continuous function (of course on its domain here  

R), therefore f (x) is also continuous at partitioning points x = 2 

and x = 10 of the domain. 

Because f (x) is continuous at partitioning point x = 2, therefore 

 
 

Now 

lim 
x  2 

lim 
x  2 

f (x) = 

 
f (x) = 

lim 
x  2 

lim 
x  2 

f (x) = f (2) ...(iv) 

 
5 [By (i)] 

. . 

Putting x = 2,  = 5 
( . x  2–         x < 2) 

 

 

 








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Again lim 
x  2 

f (x) = lim 
x  2 

(ax + b) [By (ii)] 

(...    x  2+         x > 2) 

Putting x = 2, = 2a + b 

Putting x = 2 in (i), f (2) = 5. 

Putting these values in eqn. (iv), we have 

5 = 2a + b = 5        2a + b = 5 ...(v) 

 
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x  x 

x  x 

x  x 

 

 
Again because  f (x)  is  continuous  at  partitioning  point  x  =  10, 

therefore lim 
 10 

f (x) =  lim 
 10 

f (x) = f (10) ...(vi) 

Now lim 
 10 

f (x) = lim 
 10 

(ax + b) [By (ii)] 

(x  10–     x < 10) 
Putting x = 10, = 10a + b 

Again lim 
 10 

f (x) = lim 
 10 

21 [By (iii)] 

(...   x  10+        x > 10) 

Putting x = 10; = 21 
Putting x = 10 in Eqn. (iii), f (10) = 21 
Putting these values in eqn. (vi), we have 

10a + b = 21 = 21 
 10a + b = 21 ...(vii) 
Let us solve eqns. (v) and (vii) for a and b. 

Eqn. (vii) – eqn. (v) gives 8a  = 16       a = 
16   

= 2 
8 

Putting a = 2 in (v), 4 + b = 5     b = 1. 
 a = 2, b = 1. 

Very Important Result: Composite function of two continuous 
functions is continuous. 

We know by definition that ( fog)x = f ( g(x)) 
and ( gof)x = g( f (x)) 

31. Show that the function defined by f (x) = cos (x2) is a 
continuous function. 

Sol. Given: f (x) = cos (x2) ...(i) 
f (x) has a real and finite value for all x  R. 
  Domain of f (x) is R. 
Let us take g (x) = cos x and h(x) = x2. 
Now g(x) = cos x is a  cosine function and hence is continuous. 
Again h(x) = x2 is a polynomial function and hence is continuous. 
 ( goh)x = g(h(x)) = g(x2) [...   h(x) = x2] 

= cos (x2) (Changing x to x2 in g(x) = cos x) 
= f (x) (By (i)) being the composite function of two 

continuous functions is continuous for all x in 
domain R. 

Or 
Take g(x) = x2 and h(x) = cos x. 
Then (hog)x = h( g(x)) = h(x2) 

= cos (x2) = f (x). 

32. Show that the function defined by f (x) =  cos x  is a 
continuous function. 

Sol. f (x) =  cos x  ...(i) 

f (x) has a real and finite value for all x  R. 

  Domain of f (x) is R. 
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Let us take g(x) = cos x and h(x) =  x 

We know that g(x) and h(x) being cosine function and modulus 
function are continuous for all real x. 

Now  ( goh)x  =  g(h(x))  =  g(  x  )  =  cos    x    being  the  composite 

function of two continuous functions is continuous (but  f (x)) 

Again (hog)x = h(g(x)) = h(cos x) 

=  cos x  = f (x) [By (i)] 

[Changing  x  to  cos  x  in  h(x)  =    x  ,  we  have  h(cos  x)  =    cos  x  ] 

Therefore f (x) =  cos x  (= (hog)x) being the composite function of 

two continuous functions is continuous. 

33. Examine that sin  x  is a continuous function. 

Sol. Let f (x) = sin x and g(x) =  x 

We know that sin x and  x  are continuous functions. 

 f and g are continuous. 

Now ( fog ) (x) = f { g (x)} = sin { g(x)} = sin  x 

We know that composite function of two continuous functions is 
continuous. 

 fog is continuous. Hence, sin  x  is continuous. 

34. Find all points of discontinuity of f defined by 

f (x) =  x  –  x + 1  . 

Sol. Given: f (x) =  x  –  x + 1  ...(i) 

This f (x) is real and finite for every x  R. 

  f is defined for all x  R i.e., domain of f is R. 

Putting each expression within modulus equal to 0 

i.e.,     x = 0   and   x + 1 = 0   i.e.,    x = 0  and   x = – 1. 

–  – 1 0 

Marking these values of x namely – 1 and 0 (in proper ascending 

order) on the number line, domain R of f is divided into three 

sub-intervals (– , – 1], [– 1, 0] and [0, ). 

On the sub-interval (–, –1] i.e., for x  –1, (say for x = – 2 etc.) 

x < 0 and (x + 1) is also < 0 and therefore 

 x  = – x and  x + 1  = – (x + 1) Hence 

(i) becomes f (x) =  x  –  x + 1 

= – x – (– (x + 1)) = – x + x + 1 

i.e.,   f (x) = 1   for   x  – 1 ...(ii) 

 On the sub-interval [– 1, 0]   i.e.,for – 1  x  0 

say for x  

 1 



 2 



x < 0 and (x + 1) > 0 and therefore  x  – x and  x + 1 

= x + 1. 

Hence (i) becomes f (x) =  x  –  x + 1 

=  – x – (x + 1) = – x – x – 1 
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x – x – 

x  x 

x – x 

x     
0

 
 

=  – 2x – 1 

i.e.,    f (x) = – 2x – 1   for   – 1  x  0 ...(iii) 

On the sub-interval [0, ) i.e., for x  0, 

x  0 and also x + 1 > 0 and therefore 

 x  = x and  x + 1  = x + 1 Hence 

(i) becomes f (x) =  x  –  x + 1  = x – (x + 1) 

= x – x – 1 = – 1 

i.e., f (x) =– 1   for   x  0 ...(iv) 

From (ii), for x < – 1, f (x) = 1 is a constant function and hence is 

continuous for x < – 1. 

From (iii), for – 1 < x < 0, f (x) =  –  2x  –  1  is  a  polynomial function 

and hence is continuous for – 1 < x < 0. 

From (iv), for x > 0, f (x) = – 1 is a constant function and hence is 

continuous for x > 0. 

 f is continuous in R – {– 1, 0}. 

Let us examine  continuity  of f at partitioning  point 

x = – 1. 

lim 
 1 

f (x) = lim 
 1 

1 [By (ii)] 

(...    x  – 1–         x < – 1) 

Putting x = – 1, = 1 

lim 
 1 

f (x) = lim 
 1 

(– 2x – 1) (By (iii)) 

(...   x  – 1+        x > – 1) 

Putting x = – 1, = – 2(– 1) – 1 = 2 – 1 = 1 

 lim 
  1 

f (x) =   lim 
 1 

f (x) (= 1) 

 lim 
x   1 

f (x) exists and = 1. 

Putting x = – 1 in (ii) or (iii), f (– 1) = 1 

 lim 
x   1 

f (x) = f (– 1) (= 1) 

 f is continuous at x = – 1 also. 

Let us examine  continuity  of f at partitioning  point 

x = 0. 

lim 
x  0 

f (x) =   lim 
x  0 

(– 2x – 1) (By (iii)) 

(...   x  0–    x < 0) 

Putting x = 0, = – 2(0) – 1 = – 1 

lim 
x  0 

f (x) = lim
   (– 1) [By (iv)] 

 


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(...  0+       x > 0) 
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

 

 

Putting   x = 0, = – 1    lim 
x  0 

f (x) = Lt   f (x) 
x0 

(= – 1) 

 lim 
x  0 

f (x) exists and = – 1 

Putting x = 0 in (iii) or (iv), f (0) = – 1 

 lim 
x  0 

f (x) = f (0) (= – 1) 

  f is continuous at x =0 also. 

  f is continuous on the domain R. 

  There is no point of discontinuity. 

Second Solution 

We know that every modulus function is continuous for all real x. 

Therefore |x| and |x + 1| are continuous for all real x. 

Also, we know that difference of two continuous functions is 
continuous. 

 f (x) = |x| – |x + 1| is also continuous for all real x. 

  There is no point of discontinuity. 


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dx dx 

 
 

Exercise 5.2 

Differentiate the functions w.r.t. x in Exercises 1 to 8. 
1. sin (x2 + 5). 

Sol. Let y = sin (x2 + 5) 

 
dy 

dx 

 d    
sin (x2 + 5) = cos (x2 + 5)  

 d 
(x2 + 5) 


∵

 d  
sin f (x)  cos f (x) 

 d  
f (x)








= cos (x2 + 5) . (2x + 0) 

... 
 d  

dx dx 



xn = n xn – 1 and  

 d  
(c) = 0





 dx 

= 2x cos (x2 + 5). 


dx 

Caution. sin (x2 + 5)  is  not  the  product  of  two  functions.  It  is 
composite function: sine of (x2 + 5). 

2. cos (sin x). 

Sol.   Let y = cos (sin x) 

 
dy 

dx 

 d d  

dx   
cos (sin x) = – sin (sin x)   

dx
 

 
sin x 


∵ 

 d  
cos f (x)   sin f (x) 

 d  
f (x)





 dx dx 



= – sin (sin x) . cos x = – cos x sin (sin x). 

= 

= 
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5. . 

 

dx 

 

 
3. sin (ax + b). 

Sol.   Let y = sin (ax + b) 

 
dy 

dx 

 d d  

dx   
sin (ax + b) = cos (ax + b)  

dx
 (ax + b) 

= cos (ax  + b) 

a

 d 
(x) 

 d 
(b)





  dx dx 



= cos (ax + b) [a(1) + 0] 
= a cos (ax + b). 

Note. It may be noted that  letters  a  to  q  of  English  Alphabet 
are treated as constants (similar to 3, 5 etc.) as per convention. 

4. sec (tan ). 

Sol.   Let y = sec (tan ) 

 
dy 

dx 

 d    
sec (tan ) 

d 

= sec (tan ) tan (tan )   
dx   

(tan ) 

∵

 d 
sec f (x)  sec f (x) tan f (x)

 d   
f (x)





 dx dx 



= sec (tan ) tan (tan ) sec2 ( 
 d  

)  
dx 


∵

 d  
f (x)  sec2 f (x) 

 d  
f (x)






= sec (tan 

 

) tan (tan 


 dx dx 



) sec2
 


∵ 

d x   
d

 x1/ 2   
1  

x1/ 2  1   
1  

x1/ 2      
1   


 


sin (ax + b) 

cos (cx + d) 


 

dx dx 2 2 

Sol.  Let y = 
sin (ax  b) 

cos (cx  d) 

dy cos (cx  d)
 d 

sin (ax  b)  sin (ax  b)
 d

 cos (cx  d) 

  
dx 

= dx dx 
cos2 (cx  d) 

 
(DEN.)

 d 
(NUM)  NUM

 d 
(DEN) 


 d   u  

 dx dx 

∵ By Quotient Rule 
dx  v 


(DEN)2 



    

   
 

 

2  x 



= 

= 
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dx 

( ) 

cos (cx  d) cos (ax  b)
 d

 
(ax  b)  sin (ax  b) ( sin (cx  d)) 

= 
cos2 (cx  d) 

 d 
cx  d 

dx 
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 2x cosec2 (x2) 

cot (x2) 

 

 

 

dx dx 

dx dx 

2 
dx 

dx dx 

dx dx 

 

 
a cos (cx  d) cos (ax  b)  c sin (ax  b) sin (cx  d) 

cos2 (cx  d) 

∵

 d 
(ax  b) 

 d 
(ax) 

 d 
(b)  a

 d 
(x)  0  a . 1  a 


 dx dx dx dx 

Similarly 
 d  

(cx  d)  c



dx 


6. cos x3 sin2  (x5). 
Sol. Let y = cos x3 sin2  (x5) = cos x3 (sin x5)2

 

 
dy 

dx 
= cos x3  

 d 
 (sin x5)2 + (sin x5)2    

 d 
 cos x3 


∵ By Product Rule 

 d  
(uv)  I 

 d  
(II) + II 

 d  
(I)





 dx dx dx 



= cos x3 . 2 (sin x5)  
 d   

sin x5 + (sin x5)2 (– sin x3)  
 d    

x3 

= cos x3 . 2 (sin x5) cos x5 (5x4) + sin2 x5 (– sin x3) 3x2 

∵ 

 d  
sin x5  cos x5 

 d  
x5  cos x5 (5x4)





 dx dx 



= 10x4 cos x3 sin x5 cos x5 – 3x2 sin2 x5 sin x3 
= x2 sin x5 [10x2 cos x3 cos x5 – 3 sin x5 sin x3]. 

7.  2 . 

Sol. Let y = 2 

 

= 2 (cot (x2))1/2
 

  
dy 

dx 
= 2 .  

1
 (cot x2)1/2 – 1    

 d  (cot (x2)) 

∵ 
 d  

( f (x))n  n( f (x))n  1 
 d  

f (x) 

= (cot x2)–1/2     cosec2 (x2)
 d   

x2 




 dx 




∵
 d 

cot f (x)   cosec2 ( f (x))
 d 

f (x) 

 

= 

 
8. cos ( ). 

(2x) = . 

Sol. Let y = cos ( ) 

 
dy 

dx 

 d  
=  

dx 
cos ( 

 d  
) = – sin 

dx
 


∵ 

 d  
cos f (x)   sin f (x) 

 d  
f (x)




cot (x2) 

 cosec2 (x2) 

 

  

= 
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
 dx dx 



= – sin 
∵

 d   
 d   

x1/ 2   
1  

x1/ 2  1   
1  

x1/ 2      
1   


 dx dx 2 2 

 
 

 2  x 


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dx 

 

 
9. Prove   that   the   function  f   given   by   f (x)   = 

x  R is not differentiable at x = 1. 

 
 x  – 1 

 
 , 

Sol. Definition. A  function  f (x)  is  said  to  be differentiable 

at a point x = c if  
x
li

m

c
 

f (x) – f (c)  
exists

 

x – c 

(and then this limit is called f (c) i.e., value of f (x) or   
dy

 

 
at x = c) 

Here f (x) =  x – 1 , x  R ...(i) 

To   prove:   f (x) is not differentiable at x   = 1. 

Putting x = 1 on (i), f (1) =  1 – 1  =  0  = 0 

Left Hand Derivative = Lf (1) = lim 
x  1 

 f (x)  f (1) 

x  1 

 
=   lim 

x  1 

|x  1| 0 
x  1 

 
lim 

x  1 

 (x  1) 

x  1 

[...    x  1–       x < 1      x – 1 < 0     x – 1  = –(x – 1)] 

=   lim 
x  1 

(– 1) = – 1 ...(ii) 

Right Hand derivative = Rf (1) = lim 
x  1 

 f (x)  f (1) 

x  1 

=   lim 
x  1 

|x  1| 0 
x  1 

=   lim 
x  1 

(x  1) 

x  1 

(...    x  1+       x > 1      x – 1 > 0   x – 1  = x – 1) 

=   lim 
x  1 

1 = 1 ...(iii) 

From (ii) and (iii), Lf (1)  Rf (1) 

  f (x) is not differentiable at x = 1. 

Note. In problems on limits of Modulus function, and bracket 

function (i.e., greatest Integer Function), we have to find both left  

hand limit and right hand limit (we have used this concept quite 

few times in Exercise 5.1). 

10. Prove that the greatest integer function defined by 

f (x) = [x], 0 < x < 3 

– 

– – 

– 



 



= 
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is not differentiable at x = 1 and x = 2. 

Sol.  Given: f (x) = [x], 0 < x < 3 ...(i) 

Differentiability at x = 1 

Putting x = 1 in (i), f (1) = [1] = 1 

Left Hand derivative = Lf (1) = 

Put x = 1 – h, h  0+
 

lim 
x  1 

 f (x)  f (1) 

x  1 
=   lim 

x  1 

[x]  1 

x  1 – – 
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h  h 

 h 

 
 

 
=   lim 

h  0 

[1  h]  1 

1  h  1 

 
=   lim 

h  0 

0  1 

 h 
=   lim 

1
 

0 

[We know that as h  0+, [c – h] = c – 1 if c is an integer. 

Therefore [1 – h] = 1 – 1 = 0] 

Put h = 0, =  
1
 

0 
=  does not exist. 

  f (x) is not differentiable at x = 1. 

(We need not find Rf (1) as Lf (1) does not exist). 

Differentiability at x = 2 

Putting x = 2 in (i), f (2) = [2] = 2 

Left Hand derivative = Lf (2) = 

Put x = 2 – h as h  0+
 

lim 
x  2 

 f (x)  f (2) 
=

 

x  2 
lim 

x  2 

[x]  2 

x  2 

=   lim 
h  0 

[2  h]  2 

2  h  2 
=   lim 

h  0 

1  2 

 h 
lim    

 1
 

h  0 

 

=    lim 
h  0 

 
1  

=  
1 

h 0 

(For h  0+, [2 – h] = 2 – 1 = 1) 

=  does not exist. 

  f (x) is not differentiable at x = 2. 

Note. For h  0+, [c + h] = c if c is an integer. 





 



 



= 
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dx dx 

dx 

 
 

Exercise 5.3 

dy 
Find 

dx  
in the following Exercises 1 to 15. 

1. 2x + 3y = sin x. 

Sol. Given: 2x + 3y = sin x 

Differentiating both sides w.r.t. x, we have 
 d 

(2x) +
 d 

(3y) =
 d 

 sin x 

dx dx dx 

 2 + 3 
dy

 
dy 

= cos x     3 
dx

 = cos x – 2  
dy

 = 
cos x  2 

.
 

3 

2. 2x + 3y = sin y. 

Sol. Given: 2x + 3y = sin y 

Differentiating both sides w.r.t. x, we have 
 d 

(2x) +
 d  

(3y) =
 d 

 dy sin y   2 + 3 
dy 

= cos y 

dx dx dx dx dx 

 – cos y 
dy

 
dx 

dy 
+ 3 

dx
 = – 2  – 

dy
 (cos y – 3) = – 2 

 
dy 

dx 
=
 2 

.
 

cos y  3 
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2 

dx 

dx dx 

dx dx 

2 + 

dx 

dx 

 

3. ax + by2 = cos y. 

Sol. Given: ax + by2 = cos y 

Differentiating both sides w.r.t. x, we have 
 d  

(ax) + 
 d  

(by
2
) = 

 d  
(cos y)   a  + b  . 2y 

dy
 

 
 
= – sin y 

dy
 

dx dx dx dx dx 

 by 
dy

 
dx 

+ sin y 
dy

 = – a 

 
dy 

(2by + sin y) = – a  
dy

 =
  a  

dx dx 

4. xy + y2 = tan x + y. 

Sol. Given: xy + y
2
 = tan x + y 

Differentiating both sides w.r.t. x, we have 

2by  sin y 

 d  
(xy) +

 d  
y2 =

 d   
tan x +

 d    
y 

dx dx dx dx 
Applying product rule, 

x 
 d  

y + y 
 d  

x + 2y
 dy   

= sec2 x +
 dy

 

dx dx dx dx 

 x dy 

dx 
+ y + 2y 

dy
 = sec2 x + 

dy
 

 x 
dy 

dx 
y 

dy 

dx 

dy   
= sec2 x – y 

 (x + 2y – 1) 
dy  

= sec2 x – y    
dy

 
sec2 x  y 

x  2y  1 

5. x2 +  xy + y2 = 100. 

Sol. Given: x2 + xy + y2 = 100 

Differentiating both sides w.r.t. x, 
 d 

x2 +
 d  

xy +
 d  

y2 =
 d  

(100) 
dx dx dx dx 

  2x + 
 

x 
 d  

y  y 
 d  

x 
  
+ 2y 

dy   
= 0 


  dx dx   dx 

 x x 
dy

 
dx 

+ y + 2y 
dy   

= 0 

 (x + 2y) 
dy

 = – 2x – y  
dy

 = – 
(2x  y) 

.
 

+ 2 

– 

. = 
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6.  x3 + x2y + 
dx 

xy2 + 
y3 = 81. dx x  2 y 

Sol. Given: x3 + x2y + xy2 + y3 = 81 

Differentiating both sides w.r.t. x, 
 d 

x3 +
 d 

x2y +
 d 

xy2 +
 d 

y3 =
 d  

81 
dx dx dx dx dx 
  3x2 + 

 
x2 

dy 
 y .

 d  
x2 
  

+ x 
 d  

y2 + y2 d  
(x) + 3y2 

dy   
= 0 


 dx dx 

 dx dx dx 
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3 + 

dx dx 

dx dx 

dx dx 

dx 
dx 

dx 

dx 

dx 

dx 

dx 

dx 

dx 

dx 

dx 

 
 

 x2 x2 
dy 

dx 
+ y . 2x + x . 2y 

dy
 + y2.1 + 3y2 

dy   
= 0 

dy 
 

dx (x2 + 2xy  + 3y2) = – 3x2 – 2xy  – y2 

 
dy 

dx 
= – 

(3x
2
  2xy  y

2
) 

.
 

x
2
  2xy  3y

2
 

7. sin2 y + cos xy = . 

Sol.  Given: sin2 y + cos xy = 

Differentiating both sides w.r.t. x, 

 d   
(sin y)2 +

 d    
cos xy =

 d 
() 

 2 (sin y)1
 d  

sin y – sin xy 
 d 

(xy) = 0 

  2 sin y cos y 
dy 

– sin xy 
 

x 
dy 

 y .1
 

= 0 

dx 
   dx 



 sin 2y 
dy

 – x sin xy
 dy

 – y sin xy = 0 

 (sin 2y – x sin xy) 
dy

 

 
= y sin xy 

 
dy 

dx 

  y sin xy  
= 

sin 2 y  x sin xy 

8. sin2 x + cos2 y = 1. 

Sol. Given: sin2 x + cos2 y = 1 

Differentiating both sides w.r.t. x, 

 d   
(sin x)2 +

 d 
 (cos y)2 =

 d 
 (1) 

 2 (sin x)1
 d 

 sin x + 2 (cos y)1
 d 

 

 
cos y = 0 

 2 sin x cos x + 2 cos y 
 
 sin y 

dy  
= 0 





 2 sin x cos x – 2 sin y cos y 
dy

 

 sin 2x – sin 2y 
dy

 

dx 



= 0 

 
= 0 

. 
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dx dx 
= . 

 

 – sin 2y 
dy

 

–1   
   2x    

= – sin 2x  
dy

 
sin 2x 

sin 2y 

9. y = sin 
 1+ x2 

 
. 

Sol. Given: y = sin–1
 

    2x    

 1  x2 


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–1 , 

 x2 

. . –1 

 2 



To simplify the given Inverse T-function, put x = tan . 

 y = sin–1
 
   2 tan    

 1  tan

2
  

= sin–1 (sin 2) = 2

    y = 2 tan–1 x (... x = tan    = tan–1 x) 

 
dy 

dx 
= 2 . 

   1   

1  x2 

2 
 

 = 
1  x2 

.
 

 
10. y = tan 

 3x – x3 


 1 – 3x2 


< x < . 

Sol.  Given: y = tan–1
 
 3x  x3  , 


 1  3x2 

< x < 

To simplify the given Inverse T-function, put x = tan . 

 y = tan–1
  3 tan   tan3  




= tan–1 (tan 3) = 3





 y = 3 tan–1
 

1  3 tan
2
 

x 





(... x = tan    = tan–1 x) 

 
dy 

dx 
= 3 . 

   1   

1  x2 
=
   3  

.
 

1  x2 

11.   y =  cos–1   
 1 – x2  

, 0 < x  < 1. 

 1 +  

Sol. Given: y = cos–1
 

 1  x2 

 1  x2 



To simplify the given Inverse T-function, put x = tan . 

 y = cos–1
 
 1  tan2  




 1  tan2   = cos–1 (cos 2) 

= 2


= 2 tan –1 x 


( . x = tan         = tan x) 

 
dy 

dx 
= 2 . 

   1   

1  x2 
=
   2  

.
 

1  x2 

12.   y = sin–1   
 1 – x2  

, 0 <  x < 1. 

 1+  x 



Sol. Given: y = sin–1
 

 1  x2 

–1  

 

 

 

 

 

, 0 < x < 1 
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
 1  x2 



To simplify the given Inverse T-function, put x = tan . 

  y = sin–1
 

 1  tan2  


 1  tan2  

= sin–1 (cos 2) 

= sin–1 sin 
  

 2
 
= 

 
– 2


 2 

 2 

   y = 
 

– 2 tan–1 x (... x = tan    = tan–1 x) 
2 
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 x2 

   x2 

 

 

  
dy 

dx 

 
= 0 – 2 . 

 
   1   

1  x2 

 

=
  2 

. 
1  x2 

13.  y = cos–1   
   2x     

, – 1 < x < 1. 

 1+ 

Sol. Given: y = cos–1
 

    2x    

 1  x2 



To simplify the given Inverse T-function put x = tan . 

 y = cos–1
 
   2 tan    


 1  tan2  

= cos–1 (sin 2) 

= cos–1 cos 
  

 2
 
= 
 

– 2


 2 

 2 

 y = 
 

– 2 tan–1 x (... x = tan     = tan–1 x) 
2 

  
dy 

dx 
= 0 – 2 . 

   1   

1  x2 
=
  2 

. 
1  x2 

14. y = sin–1  (2x 

 
Sol. Given: y = sin–1 (2x 

Put x = sin 

), – < x < . 

 
) 

To simplify the given Inverse T-function, 

put x = sin   (For 

 y = sin–1 (2 sin 

= sin–1 (2 sin 

, put x  = a sin ) 

) 

) = sin–1 (2 sin  cos ) 

y = sin–1 (sin 2) = 2 = 2 sin–1 x 

[... x = sin     = sin–1 x] 

 
dy 

dx 
= 2 . 

   1 
.
 

15.   y = sec–1    
 1 



 2 – 1 


0 < x < . 

 
 

 

 

 

   

cos2 
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 

Sol.  Given: y = sec–1
 

     1 


 2x2  1 

To simplify the given inverse T-function, put x = cos . 

 y = sec–1
 
 1 

 2 cos

2   1 
= sec–1

 

    1  
 
cos 2 




= sec–1 (sec 2) = 2 = 2 cos–1 x (... x = cos    = cos–1 x) 
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 


 
 

 
dy 

dx 



= 2 



 1 

1  x 



2 
  

= 
 2 

.
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dx dx 

 

 

 

 
 

Exercise 5.4 

Differentiate the following functions 1 to 10 w.r.t. x 

ex 

1. 
sin x 

.
 

Sol. Let y = 

 
 

dy 

dx 

ex 
 

 

sin x 

(DEN) 
 d  

(NUM)  (NUM) 
 d  

(DEN) 
 

 

(DEN)2 

sin x
 d

 ex  ex  
 d 

sin x sin x . ex  ex cos x 
 

= dx dx 
sin2 x = 

sin2 x 

 
2. 

esin–1 x . 

= ex (sin x  cos x) 
.
 

sin2 x 

Sol.  Let y = esin
1 x 

 
dy = esin

1 x 
 d  

sin–1 x 

∵

 d   
ef (x)  ef (x)

 d   
f (x)




dx 

 
 

3. 
ex

3 

. 

 
= esin

1 x 

dx 

.
  1 

.
 


 dx dx 



Sol.  Let y = ex3 = e(x3 ) 

 
dy = e(x3 )  d  

x3
 


∵

 d   
ef (x)  ef (x)

 d   
f (x)




dx 

= e(x3 ) 

dx 

3x
2
 = 3x

2
 

 
e(x3 ) . 


 dx dx 



4. 
sin (tan–1 e– x). 

Sol.   Let y = sin (tan–1 e– x) 

 
dy dx 

= cos (tan–1 e– x)
 d 

 

= 
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dx 
(tan–1 e– x) 


∵

 d 
sin f (x)  

cos f (x)
 d 

f (x)




 dx dx 



= cos (tan–1 e– x) 
  1  

1  (ex)2 

 d    
e– x  

dx 

 d 1 

 1 d 

∵ 
dx 

tan f (x) 1  ( f (x))2 dx  
f (x)



 
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


= cos (tan–1 e– x) 

 
1 

 

1  e2x 
e– x    

  d  

dx 

 
(– x) 

= – 
e x cos (tan1 e x) 

 
 


∵

 d 
( x)   1




1  e 2x 

5. 
log (cos ex). 


 dx 




Sol.   Let y = log (cos ex) 

 
dy 

=
  1   

 d  
(cos ex) 




 d 
log f (x) 

  1 d
 f (x)




dx x dx 
∵ 

dx f (x) dx 



=
  1   

cos e 

(– sin ex)
 d  

ex 

 

∵

 d 
cos f (x)   sin f (x)

 d 
f (x)




cos ex dx 
 dx dx 



= – (tan ex) ex = – ex (tan ex) 

6. ex + ex
2  

+ ... + ex
5

. 

Sol.   Let y = ex + ex
2 

+ ... + ex
5

 

= ex + ex
2 

+ ex
3 

+ ex
4 

+ ex
5

 

 
dy  

=
 d  

ex +
 d  

ex
2 

+
 d   

ex
3 

+
 d  

ex
4 

+
 d  

ex
5

 

dx dx dx dx dx dx 

= ex + ex
2  d  

x2 + ex
3  d  

x3 + ex
4  d  

x4 

dx dx dx 

+ ex
5   d  

x5 

∵ 

 d  
ef (x)  ef (x)

 d  
f (x)




dx 
 dx dx 



= ex + ex
2 

. 2x + ex
3 

. 3x2 + ex
4 

. 4x3 + ex
5 

5x4 

= ex  + 2x  ex
2 

+ 3x2 ex
3 

+ 4x3 ex
4 

+ 5x4 ex
5

. 

7. , x > 0. 

Sol.   Let y  = = ( e )
1/2
 

 
dy   

= 
1 
( e )–1/2

 d   
e 


∵

 d 
( f (x))n  n( f (x))n  1

 d 
f (x)




dx 2 dx 
 dx dx 



=
   1   

e 
d  


∵

 d   
ef (x)  ef (x)

 d   
f (x)




2 dx 
 dx dx 


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

=
   1   e 

1 
∵

 d  
 d   

x1/ 2  
1 

x1/ 2     
1 

2 
 dx dx 2 

= . 

8. log (log x), x >  1. 

Sol.   Let y = log (log x) 


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log x 

dx 

x 

 
 

 
dy 

=
  1   

 d  
(log x) 

 d 
log f (x) 

  1 d 
f (x)




∵ 
dx f (x) dx 



dx log x 

=
  1   

log x 

dx  

1 =
   1 

. 

x x log x 

9. 
cos x 

, x > 0. 

Sol.  Let y = 
cos x

 
log x 

dy (DEN) 
 d  

(NUM)  (NUM) 
 d  

(DEN) 

 
dx   

= dx dx 
(DEN)

2
 

log x
 d

 (cos x)  cos x
 d

 log x 

= dx dx 
(log x)2 

log x ( sin x)  cos x . 
1
 

= 
(log x)2 

 

sin x log x 

 cos x 


= 




(log x)2 

x     
= – (x sin x log x  cos x) 

.
 

x (log x)2 

10. cos (log x + ex), x  >  0. 

Sol.   Let y = cos (log x + ex) 

 
dy 

dx 
= – sin (log x + ex)

 d 
 (log x + ex) 


∵

 d 
cos f (x)   sin f (x)

 d 
f (x)





 dx dx 



= – sin (log x + ex) .  1  ex 


 x 




= – 
 1 

 ex 

 sin (log x  + ex). 


 x 



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



Exercise 5.5 

Note. Logarithmic Differentiation. 

The process of differentiating a function after taking its logarithm 
is called logarithmic differentiation. 

This process of differentiation is very useful in the following 
situations: 

(i) The given function is of the form ( f (x)) g(x)
 

(ii) The given function involves complicated (as per our thinking) 
products (or and) quotients (or and) powers. 
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(x – 1)(x – 2) 

(x – 3)(x – 4)(x – 5) 

dq lk 

dx 

dx dx 

 

dx 

dx 

dx 

 
 

Remark  1. log  
(am  bn  cp)

 

= m log a + n log b + p log c – q log d – k log l 

Remark 2. log (u + v)  log u + log v 

and log (u – v)  log u – log v. 

Differentiate the  following  functions  given  in  Exercises 
1 to 5 w.r.t. x. 

1. cos x cos 2x cos 3x. 

Sol.   Let y = cos x cos 2x cos 3x ...(i) 

Taking logs on both sides, we have (see Note, (ii) page 261) 

log y = log (cos x cos 2x cos 3x) 

= log cos x + log cos 2x + log cos 3x 

Differentiating both sides w.r.t. x, we have 

 d   
log y  =  

 d 
 log cos x +  

 d 
 log cos 2x + 

 d 
 log cos 3x 

 
1   dy 

y    dx 
= 

 1  

cos x 

 d   
cos x +  

    1 
 

dx cos 2x 

 d    
cos 2x 

+ 
   1 d   

cos 3x  



 d 
log f (x) 

   1    d   
f (x)




cos 3x    dx 
∵ 

dx f (x) dx 


 

= 
  1  

cos x 
(– sin x) +  

     1 
 

cos 2x 

 d  
(– sin 2x) 

dx 
(2x) 

 

 
 

dy 

dx 

+ 
   1  

cos 3x 

= – tan x  – (tan 2x) 2 – tan 3x  (3) 

= – y (tan x + 2 tan 2x + 3 tan 3x). 

 d  
(– sin 3x) 

dx 
3x 

Putting the value of y from (i), 

dy  
= – cos x cos 2x cos 3x (tan x + 2 tan 2x + 3 tan 3x). 

 
2. . 

 

 
Sol.  Let y = 

 (x  1)(x  2) 1/2 
= 

(x  3)(x  4)(x  5) 




...(i) 

Taking logs on both sides, we have 

(x  1)(x  2) 

(x  3)(x  4)(x  5) 
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log y =  
1
 

2 

[log (x – 1) + log (x – 2) – log (x – 3) 

– log (x – 4) – log (x – 5)] (By Remark I above) 

Differentiating both sides w.r.t. x, we have 
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

dx 

dx 



dx 

dx 

 

 

1 dy 
= 

1   1     d (x  1)  
   1     d

 (x  2)  
   1     d

 (x  3) 

y dx 2 
 

x  1 dx x  2 dx x  3 dx 

 
   1     d (x  4)  

   1     d
 (x  5)





 

dy  
=  

1 
y 

x  4 dx x  5 dx 


  1   


   1   


   1   
 

   1    


   1  

dx 2  
x  1 x  2 x  3 x  4 x  5




 

Putting the value of y from (i), 
 

dy 
= 

1    1    
 

   1    
 

   1    
 

   1    
 

   1    
.
 

dx 2 
 

x  1 x  2 x  3 x  4 x  5



 

3. (log x)cos x. 

Sol.    Let y = (log x)cos x ...(i) [Form ( f (x)) g(x)] 

Taking logs on both sides of (i), we have (see Note (i) page 261) 
log y = log (log x)cos x = cos x log (log x) 

[...  log mn = n log m] 

 d   
log y =  

 d 
 [cos x . log (log x)] 

 
1   dy 

y    dx 
= cos x  

 d 
 

 d  
log (log x) + log (log x) 

dx
 

 
cos x 

x  
    1  

log x 

[By Product Rule] 

 d   
log x + log (log x)(– sin x) 

= 
cos x 

log x 
. 

1  
– sin x log (log x) 

x 

 
dy  

= y  
 cos x  

 sin x log (log x)
 

. 
dx 

 
x log x 




 

Putting the value of y from (i), 
dy  

= (log x)cos x
 
 cos x  

 sin x log (log x)
 

. 
 

x log x 



dx  

Very Important Note. 

To differentiate y  = ( f (x)) g(x)  (l(x))m(x) 

(x  1)(x  2) 

(x  3)(x  4)(x  5) 



= cos 
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dx 
dx 

or y = ( f (x)) g(x)  h(x) 
or y = ( f (x)) g(x)  k where k is a constant; 

Never start  with  taking  logs  of  both  sides,  put  one  term 
= u and the other = v 

 y = u  v 

 
dy 

dx 

du dv 

dx 
 

dx 

Now find  
du

 and  
dv

 by the methods already learnt. 

= 



Class 12 Chapter 5 - Continuity and Differentiability 

 79 

 

  Call Now For Live Training 93100-87900 

– 

dx 

x 

dx 

dx 

dx 

dx 

 

4. x x – 2sin x. 

Sol.   Let y = xx – 2sin x
 

Put u = xx and v = 2sin x (See Note) 

 y = u – v 

 
dy 

dx 

du dv 

dx dx 
...(i) 

Now u = xx [Form (f (x))g(x)] 

   log u = log xx = x log x [...   log mn = n log m] 

 
d  

dx 

 d  
log u =  

dx
 (x log x) 

 
1   du 

u   dx 
x

 d 

dx 
log x + log x   

 d    
x 

= x . 
1
 + log x . 1 = 1 + log x 

 
du 

dx 
Again v = 2sin x

 

 
= u (1 + log x) = xx (1 + log x) ...(ii) 

  
dv 

dx 

 d    
2sin x  = 2sin x  log 2  

 d  sin x 


∵ 

 d  
af (x)  af (x) log a 

 d   
f (x)





 dx dx 



  
dv 

dx 
= 2sin x  (log 2) cos x = cos x . 2sin x  log 2 ...(iii) 

Putting values from (ii) and (iii) in (i), 

dy  
= xx (1 + log x) – cos x . 2sin x  log 2. 

5. (x + 3)2  (x + 4)3  (x + 5)4. 

Sol.   Let y = (x + 3)2 (x + 4)3 (x + 5)4 ...(i) 

Taking logs on both sides of eqn. (i) (see Note (ii) page 261) 

we have log y =2 log (x + 3) + 3 log (x + 4) 
+ 4 log (x + 5) (By Remark I page 262) 

 
d  

dx 
log y =  2  

 d 
 

 d  
log (x + 3) + 3 

dx
 

 d  
log (x + 4) + 4 

dx
 

log (x + 5) 

 
1   dy 

y    dx 

   1      d 

x  3 dx 
(x + 3) + 3

    1       d 
 (x + 4) 

= 

= 

= 

= 2 . 
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x  4  dx 

+ 4 .  
   1      d  (x + 5) 

= 
  2  

x  3 
+

  3  

x  4 
+ 

  4  

x  5 

x  5  dx 

 
dy   

= y 
    2    

 
   3    

 
   4   

dx 
 

x  3 x  4 x  5 



 
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dx 

+ 







Putting the value of y from (i), 

dy 2 
3 4 

    2    
 

   3    
 

   4   

= (x + 3) (x + 4) (x + 5) 
 

x  3 x  4 x  5 
 .

 

dx  

Differentiate the following functions given in Exercises 6 to 11 w.r.t. x. 
x 1+ 

1 
6.   

 
x + 

1 
 + x



 x  . 


 x 



1  x 1  
1 

Sol.  Let y = 
 

x 




x    
+ 

x 

x


 x 

1  
1 




Putting  

x  
1  = u and  x  = v, 


 x  

x
 

We have y = u + v   
dy

 
du dv 

dx dx 
...(i) 

 1 x 
Now u = 

 
x  

x 



 1 x 

 
 1 

Taking logarithms, log u = log 
 

x  
x 
 = x log 

 
x  

x  
[Form uv] 

Differentiating w.r.t. x, we have 

1 du 
= x .  

   1        d   
x  

1  + log 
 

x  
1  

. 1  

u  dx x 
 1

 
x 

dx  x 



 x 



1 du = x .  
   1 

 
.  

1  

 1  + log 
 

x  
1   

. 1 

u  dx x  
1 


x 

x2 

 

 x 


 d  1  


 d 
x–1 

 (– 1) x–2 
 

– 1∵ 
dx  x  dx x2 

 

 
du 

= u 
 x2  1 

 log 
 

x  
1 

dx  x2  1 
 

x 



 1 x 
 x2  1 

 log 
 

x  
1 






= 
 

x  x 
  x2  1 

 x  ...(ii) 





= 




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1  
1 

Also v = x


 x  

1  
1 




Taking logarithms,   log v = log 

 x     = 
1  

1  log x 
x 

Differentiating w.r.t. x, we have 

 x 



1  
. 

 dv =  1  
1   .  

1 + log x .   
 1 

v dx 
 x  x 


    

x2 




∵ 

 d  1 
 

 d  
x–1  (– 1) x–2  

– 1



 dx  x dx x2 
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dx dx 

+ 

dx 

dx 




 
dv   

= v  
 1 

1  
1  

 
 1 log x




dx 
 

x  x  x2 

 
1  

1 

= 


 x   1 

1  
1  

 
 1 log x


 ...(iii) 

x  x  x  x2 

 



have 

Putting the values of  
du

 and  
dv

 from (ii) and (iii) in (i), we 

dy 




1 x   x2  1 
 

  

 1 




1  
1    1  1  1 

= x    log   x   + x


 x        1       log x

dx 
 x   x2  1 x 

 x  x  x2 

7. (log x)x + xlog x. 
Sol.   Let y = (log x)x + xlog x 

= u + v where u = (log x)x and v = xlog x 

 
dy 

dx 

du dv 

dx dx 
...(i) 

Now   u = (log x)x [(f (x)) g(x)] 

 log u = log (log x)x = x log (log x) [... log mn = n log m] 

 d  
 

dx log u =  
 d 

 [x log (log x)] 

 
1 du 

= x  
 d  log (log x) + log (log x)  

 d 
 x (By product rule) 

u dx dx 

= x .  
   1 

 
log x 

= x .  
   1 

 
log x 

dx 

 d   
log x + log (log x) . 1 

. 
1  

+ log (log x) 
x 

du   1  x   
   1    

 log (log x)



 = u   log (log x) = (log x) 
 

log x 



dx  log x   

= (log x)x    (1  log x log (log x)) 

log x 

= (log x)x – 1  (1 + log x log (log x))  ...(ii) 

Again   v = xlog x [Form ( f (x)) g(x)] 

 log v = log xlog x = log x . log x [... log mn = n log m] 

= 
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dx dx 

x 

dx 

= (log x)2
 

  
d 

dx 
log v =  

 d 
 (log x)2   1 

v 

dv   
= 2 (log x)1     d 

 log x 

 


∵

 d 
( f (x))n  n( f (x))n  1 

  d   
f (x)






= 2 log x .  
1
 


 dx dx 


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1  ( f (x))2 

 

+ 

= . 

dx 




 
dv = v 

 2 
log x 


 = xlog x  .  

2  log x 

dx 

 x 

 x 

= 2xlog x – 1 log x ...(iii) 

Putting values of 
du 

dx  
and 

dv 

dx  
from (ii) and (iii) in (i), we have 

dy 
= (log x)x – 1 (1 + log x log (log x)) + 2xlog x – 1 log x. 

 

8. (sin x)x  + sin–1 . 

Sol.   Let y = (sin x)x + sin–1
 

= u + v where u = (sin x)x and v = sin–1
 

 
dy 

dx 

du dv 
dx dx 

...(i) 

Now   u = (sin x)x [Form ( f (x)) g(x)] 

 log u = log (sin x)x = x log sin x 

 d  
   

dx 

 d  
(log u) =  

dx
 (x log sin x) 

 
1  du 

u dx 

 d  
= x   

dx
 

 d  
log sin x + log sin x  

dx   
x 

x  
1 sin 

x 

 d  

dx  
sin x + (log sin x) . 1 

 
 

 
du 

dx 

= x  
   1    

cos x + log sin x = x cot x + log sin x 
sin x 

= u (x cot x + log sin x) = (sin x)x (x cot x + log sin x)...(ii) 

Again v = sin–1
 

 
dv 

=
 1 d  ∵ 

 d  
sin1 f (x) 

 d   
f (x) 

dx 1  ( x)2   dx dx dx 

=
   1  

∵
 d   

 d  
x1/ 2  

1 
x1/ 2    

1   

1  x 
  dx dx 2 

dv or  dx
 

 

 

 

 

 

 2  x 



= 
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dx 

=
 1  

2 
=

 1  

2 
=

 1  

2 

...(iii) 

Putting values of  
du

 
dx 

and  
dv

 from (ii) and (iii) in (i), 

dy   
= (sin x)x (x cot x + log sin x) + 

dx 

  1 
.
 

2 

9. xsin x + (sin x)cos x. 

Sol.  Let y = xsin x + (sin x)cos x
 

= u + v where u = xsin x and  v = (sin x)cos x
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+ 

dx 

x 

x 

dx 

dx 

dx 

1 

 
 

 
dy 

dx 

du dv 

dx dx 
...(i) 

Now   u = xsin x [Form ( f (x)) g(x)] 

 log u = log xsin x = sin x log x 

  
d 

dx 
log u =  

 d 
 (sin x log x) 

 
1  du 

u dx 

 d  
= sin x   

dx
 

 d  
log x + log x  

dx
 sin x 

= sin x . 
1

 + (log x) cos x = 
sin x

 + cos x log x 

 
du 

= u 
 sin x 

 cos x log x 



dx 

   x 



= xsin x 
 sin x 

 cos x log x 

 ...(ii) 


   x 




Again v = (sin x)cos x [Form f (x)g(x)] 

 log v = log (sin x)cos x = cos x log sin x 

 
 d  

(log v) = 
 d 

 [cos x log sin x] 

dx 
dv 

 
v   dx 

dx 

= cos x  
 d 

 log sin x + log sin x  
 d 

 

 
cos x 

x   
   1  

sin x 

 d  

dx 
(sin x) + log sin x (– sin x) 

 
 

dv 

dx 

= cot x . cos x – sin x log sin x 

= v (cos x cot x – sin x log sin x) 

= (sin x)cos x (cos x cot x – sin x log sin x) ...(iii) 

Putting values of  
du

 
dv 

and  
dx

 from (ii) and (iii) in (i), 

we have  
dy

  = xsin x 
 sin x 

 cos x log x 



dx 

   x 




10. xx cos x  + 

 
x2 +1 

.
 

x2 –1   

= 

= cos 
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dx 
+ 

+ (sin x)cos x (cos x cot x – sin x log sin x) 

Sol.  Let y = xx cos x  + 
x2  1 

 

x2  1 

Putting xx cos x  = u and 
x2  1  

= v
 

x2  1 

We have  y = u + v   
dy

 
du dv 

dx dx 
...(i) = 
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. 

dx 

dx 

x 

dx 
+ 

dx 

dx 

 

Now u = xx cos x
 

Taking logarithms, log u = log xx cos x = x cos x log x 

Differentiating w.r.t. x, we have 

1 du 

u dx 

 d    
(x cos x log x) 

 d   
(x) . cos x log x + x   

 d 
 

 

 
(cos x) . log x 

+ x cos x  
 d 

 

 
 
 
 

(log x) 


∵ 

 d  
(uvw)  

du 
vw  u 

dv 
. w  uv 

dw 



 dx dx dx dx 

= 1 cos x log x + x (– sin x) log x + x cos x . 
1
 

 
du 

dx 

 
= u [cos x log x – x sin x log x + cos x] 

= xx cos x [cos x log x – x sin x log x + cos x] ...(ii) 

 
Also v = 

x2  1 
 

x2  1 

 
. Using quotient rule, we have 

dv (x2  1)
 d

 (x2  1)  (x2  1) .
 d

 (x2  1) 

dx 
=

 
dx dx 

 

(x2  1)2
 

(x2  1) . 2x  (x2  1) . 2x 
= 

(x2  1)2
 

=  
2x3  2x  2x3  2x 

(x2  1)2
 

     4x  
= –   

(x2  1)2 

du dv 

...(iii) 

Putting the values of 
dx  

and 
dx  

from (ii) and (iii) in (i), we have 

dy  
= xx cos x [cos x log x – x sin x log x + cos x]– 

    4x 
. 

dx (x2  1)2 

11. (x cos  x)x  + (x  sin x)1/x. 

Sol. Let y = (x cos x)x  + (x sin x)1/x
 

Putting (x cos x)x = u and (x sin x)1/x  = v, 

We have y = u + v  
dy

 
du dv 

=  
dx dx ...(i) 

= 

= 
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Now u = (x cos x)x
 

Taking logarithms, log u = log (x cos x)x = x log (x cos x) 
= x (log x + log cos x) 

Differentiating w.r.t. x, we have 

1  
. 

 du = x   
 1 

 
   1    

. ( sin x)
 

+ (log x + log cos x) . 1  

u dx 
 

x cos x 



 
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x 

dx dx 

dx 

dx 

dx 





 
du 

dx 
= u [1 – x tan x + log (x cos x)] 

[...    log x + log cos x = log (x cos x)] 

= (x cos x)x  [1 – x tan x + log (x cos x)] ...(ii) 

Also v = (x sin x)1/x
 

Taking logarithms, log v = log (x sin x)1/x = 
1 

log (x sin x) 
 

= 
1  

(log x + log sin x) 
x 

Differentiating w.r.t. x, we have 
1 

.
 dv 

=
 1  1 


  1  

. cos x
 

+ (log x + log sin x)  
 

 1 

v    dx x  
 

x sin x 

 

    
x2 



 

   
dv   

= v   
 1 

 
cot x 

 
log (x sin x) 

dx 
 x2 x x2 



= (x sin x)1/x . 1  x cot x  log (x sin x)  ...(iii) 


 x2 





have 

Putting the values of  
du

 and  
dv

 from (ii) and (iii) in (i), we 

dy  
= (x cos x)x  [1 – x tan x + log (x cos x)] 

 
+ (x sin x)1/x

 1  x cot x  log (x sin x)  
.
 


 x2 




Find  
dy

 of the functions given in Exercises 12 to 15: 

12. xy + yx = 1. 

Sol. Given : xy + yx = 1 

  u + v = 1   where   u = xy and   v = yx 

 
d  

(u) + 
 d  

(v) =  
 d  

(1) 

dx 

i.e., 
du

 
dx 

dx dx 

dv   
= 0 ...(i) 

Now u = xy [(Variable)variable = ( f (x)) g(x)] 
 log u = log xy = y log x 

  
d d

x log u =  
 d 

 

+ 
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dx 

dx x dx 

=  

( y log x) 

 
1  du 

u dx 
y

 d 

dx 
log x + log x  

dy
 = y .  

1
 + log x .  

dy
 

 
du 

u
 

dx 

 y 
 log x . 

dy 

 x dx 

= 
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dx 
 

dx 

dx 

dx 

dx 

dx 

. 

y 

x 

dx 

x 

dx 

= 
dx 




or 
du 

= xy 
 y 

 log x 
dy 

 x dx 
xy     y 

x 
+ xy log x  

dy
 

du dy  xy xy 
y  1 


 y – 1 y 

or 
dx   

= x y + x  log x ...(ii) ∵  
x1   x 

Again v = yx 

 log v = log yx = x log y  
d 

 log v =  
 d 

 

 
(x log y) 

 

 
1   dv 

x 
 d 

v    dx  dx 
(log y) + log y   

 d  
x = x .  

1  dy
 

y  dx 
+ log y . 1 

 
dv   

= v 
 x dy 

 log y



dx 
 

y dx 




= yx 

 

 x dy 
 log y

 = yx  
x

 
dy   

+ yx log y 

 
y dx 

 y   dx 
 

 
dv 

dx 
yx – 1x  

dy 
dx 

+ yx log y ...(iii) 

Putting values of  
du

 
dv 

and  
dx

 from (ii) and (iii) in (i), we have 

xy – 1y + xy log x  
dy

 yx – 1x  
dy 
dx 

+ yx log y = 0 

dy  
(xy log x + yx – 1x) = – xy – 1 y – yx log y 

 
dy 

dx 
13. yx = xy. 

(xy  1 y  yx log y) 

xy log x  yx  1 x 
.
 

Sol.  Given: yx = xy    xy  = yx. 
| Form on both sides is (f (x))g(x)

 

Taking logarithms, log xy  = log yx      y log x = x log y 

Differentiating w.r.t. x, we have 

y 
1  

+ log x . 
 dy

 
dx 

= x .  
1
 

dy   
+ log y . 1 

 
 

log x  
x 


dy   
= log y – 

 y
 

= 



= 

+ 

or 

= – 

. 

dx  
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 
y 
   

dx x 
 

   
 y log x  x 

y 

 
. dy 

dx 

 
x log y  y 

= 
x

 

 
 

dy 

dx 
=  

 y(x log y  y) 
.
 

x( y log x  x) 

14. (cos x)y = (cos y)x. 

Sol.   Given: (cos x)y   = (cos y)x     [Form on both sides is ( f (x)) g(x)] 

 Taking logs on both sides, we have 

log (cos x)y = log (cos y)x
 

 y log cos x = x log cos y [...  log mn = n log m] 
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dx 

dx 

dx 

dx 

+ 
dx 

 

 
Differentiating both sides w.r.t. x, we have 

 d 
( y log cos x) =  

 d 
(x log cos y) 

dx dx 
Applying Product Rule on both sides, 

   y 
 d  

log cos x + log cos x  
dy

 
dx dx 

= x 
 d  

log cos y + log cos y  
 d  

x 
dx dx 

   y .  
   1      d 

cos x + log cos x 
dy

 
cos x dx 

= x .  
   1       d  

dx 

cos y + log cos y 

cos y dx 

   y
   1  

cos x 
(– sin x) + log cos x 

dy
 

= x  
    1  

 
 sin y 

dy 
 + log cos y 

cos y    dx 

  – y tan x + log cos x . 
dy

 = – x tan y  
dy

 
dx 

+ log cos y 

   x tan y  
dy

 + log cos x .  
dy

 = y tan x + log cos y 

 
dy 

dx 

 
(x tan y + log cos x) = y tan x + log cos y 

 
dy 

dx 
= 

 y tan x  log cos y 
.
 

x tan y  log cos x 

15. xy = ex – y. 

Sol.  Given: xy = ex – y 

Taking logs on both sides, we have 

log (xy) = log ex – y 

   log x + log y = (x – y) log e 
. .

 

   log x + log y = x – y ( . 

Differentiating both sides w.r.t. x, we have 

log e = 1) 

 d   
log x +  

 d    
log y =  

 d  
x –  

 d  
y 

dx dx 

 
1 1 dy 

x y dx 

dx dx 

= 1 – 
dy

 



Class 12 Chapter 5 - Continuity and Differentiability 

 96 

 

  Call Now For Live Training 93100-87900 

 
1  dy +  

dy = 1 –  
1

 
  

dy   1 
 1

  
=

 x  1 

y  dx dx x dx   y 
 x 

 

 
 1  y   dy   

=   
x  1    

y   
   

dx x 
 
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dx 






1  1 1  1 1  1 1  1




   

dx 

dx 



Cross-multiplying x(1 + y) 
dy

 

 
= y(x – 1) 

 
dy 

dx 
=  

 y(x  1) 
.
 

x(1  y) 

16. Find the derivative of the function given by 

f (x) = (1 + x)(1 + x2)(1 + x4)(1 + x8) and hence find f (1). 

Sol.  Given: f (x) = (1 + x)(1 + x2)(1 + x4)(1 + x8) ...(i) 

Taking logs on both sides, we have 

log f (x) = log (1 + x) + log (1 + x2) + log (1 + x4) + log (1 + x8) 

Differentiating both sides w.r.t. x, we have 

  1      d  f (x) =  
   1        d  

(1 + x) +  
    1        d 

 (1 + x2) 

f (x)  dx 1  x    dx 1  x2  dx 

+ 
   1  

1  x4 

 d   
(1 + x4) + 

    1  

1  x8 

 d    
(1 + x8) 

 
1  

f (x) =  
   1    

. 1 + 
1 

2 . 2x + 
 

1  
4 . 4x3 + 

 

1  
8    8x7 

 

f (x)   1  x 1  x 1  x 1  x 

    f (x) = f (x)   1    


   2x    

 4x3 

   
8x7  




1  x 1  x2 
 

1  x4 1  x8 

Putting the value of f (x) from (i), 
f (x) = (1 + x)(1 + x2)(1 + x4)(1 + x8) 

  1    


   2x    





4x3 

 
  

8x7  





Putting x = 1, 

1  x 1  x2 
 

1  x4 1  x8 

f (1) = (1 + 1)(1 + 1)(1 + 1)(1 + 1) 

   1   
 

   2    
 

   4    
 

   8 

 

= 2.2.2.2 
1 
 

2 
 

4 
 

8 

 2 2 2 2 
= 16 

15

 2 
= 8 × 15 = 120. 

17. Differentiate (x2 – 5x + 8)(x3 + 7x + 9) in three ways 
mentioned below: 

(i) by using product rule. 




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dx dx 

(ii) by expanding the product to obtain a single 
polynomial. 

(iii) by logarithmic differentiation. 
Do they all give the same answer? 

Sol.  Given: Let y = (x2 – 5x + 8)(x3 + 7x + 9) ...(1) 
dy 

(i) To find 
dx  

by using Product Rule 

dy 
= (x2 – 5x + 8)   

 d 
(x3 + 7x + 9) 
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dx 

dx 

dx 



dx 

 

 
 

+ (x3 + 7x + 9)
 d 

 (x2 – 5x + 8) 

= (x2 – 5x + 8)(3x2 + 7) + (x3 + 7x + 9)(2x – 5) 
= 3x4 + 7x2 – 15x3 – 35x  + 24x2 + 56 

+ 2x4 – 5x3 + 14x2 – 35x + 18x – 45 
= 5x4 – 20x3 + 45x2 – 52x + 11 ...(2) 

dy 
(ii) To  find   

dx   
by  expanding  the  product  to  obtain  a 

single polynomial. 
From (i), y = (x2 – 5x + 8) (x3 + 7x + 9) 

= x5 + 7x3 + 9x2 – 5x4 – 35x2 – 45x 
+ 8x3 + 56x + 72 

or y = x5 – 5x4 + 15x3 – 26x2 + 11x + 72 

dy 
 

dx 
dy 

= 5x4 – 20x3 + 45x2 – 52x + 11 ...(3) 

(iii) To find 
dx  

by logarithmic differentiation 

Taking logs on both sides of (i), we have 
log y = log (x2 – 5x + 8) + log (x3 + 7x + 9) 


 d 

dx 
log y =  

 d 
 log (x2 – 5x + 8) +  

 d 
 

dx 
log (x3 + 7x + 9) 

 
1  dy 

y  dx 
=

 1  

x2  5x  8 

 d 
(x2 – 5x + 8) 

+
 1  

x3  7x  9 

 d    
(x3 + 7x + 9) 

=
 1  (2x – 5) + 3 

1
 (3x2 + 7) 

x2  5x  8 x    7x  9 

 
dy   

= y  
  (2x  5)   

 
3x2  7  



dx  x2  5x  8 x3  7x  9 

= y 
 (2x  5)(x3  7x  9)  (3x2  7)(x2  5x  8) 

 
(x2  5x  8)(x3  7x  9) 




[2x4  14x2  18x  5x3  35x  45  3x4  15x3 

= y  
 24x2  7x2  35x  56] 

(x2  5x  8)(x3  7x  9) 

. 


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dx 

dy  
= y 

(5x4  20x3  45x2  52x  11) 

dx (x2  5x  8)(x3  7x  9) 
Putting the value of y from (i), 

dy   
= (x2 – 5x + 8)(x3 + 7x + 9) 

(5x4  20x3  45x2  52x  11) 

(x2  5x  8)(x3  7x  9) 

= 5x4 – 20x3 + 45x2 – 52x + 11 ...(4) 

or 
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dx dx 

 
 

 
From  (2),  (3)  and  (4),  we  can  say  that  value  of 

dy 

dx  
is same 

obtained by three different methods used in (i), (ii) and (iii). 

18. If u, v and w are functions of x, then show that 
 d  

(u . v . w) =  
du  

v . w + u .  
dv  

. w + u . v  
dw

 

dx dx dx dx 

in two ways-first by repeated application of product rule, 
second by logarithmic differentiation. 

Sol. Given: u, v and w are functions of x. 

To prove:   
 d  

(u . v . w) = 
du  

. v . w + u . 
dv  

. w + u . v . 
dw

 ...(i) 

dx dx dx dx 
(i) To prove eqn. (i): By repeated application of product 

rule 

L.H.S. = 
d 

dx 
(u . v . w) 

Let us treat the product uv as a single function 

=  
 d  

[(uv)w] = uv
 d  

(w) + w 
 d  

(uv) 

dx dx dx 
d 

Again Applying Product Rule on 
dx 

(uv) 

L.H.S. = 
 d  

(uvw) = uv 
dw   

+ w  

u

 d  
v  v

 d 
u



dx 

uv 
dw 

dx 

dx 

dv 
+ uw 

dx
 





vw 
du 

dx 

dx dx 

Rearranging terms 

or 
d  

(uvw) =  
du

 

 
dv 

. v . w + u . 

 
dw 

. w + u . v . 

dx dx dx dx 
which proves eqn. (i) 

(ii) To prove eqn. (i): By Logarithmic differentiation 

Let y = uvw 

Taking logs on both sides 

log y = log (u . v . w) = log u + log v + log w 


 d 

dx 

 d  
log y =  

dx
 log u +  

 d 
 log v +  

 d 
 log w 

 
1  dy 

y  dx 

1 du 

u dx 

1 dv 

v dx 

1  dw 

w dx 

 
dy   

= y  
1 du 

 
1 dv 


 1  dw 

= + 

= + + 
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dx 
 u dx v dx w dx 

Putting y = uvw,  
 d  

(uvw) = uvw 
 1 du 

 
1 dv 


 1  dw 



dx 
 u dx v dx w dx 
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dx 
. + 




du 

=  
dx 

. v . w + u .  
dv

 

 
w u .v.

 dw 

dx 

 
which proves eqn. (i). 

Remark. The result of eqn.  (i)  can  be  used  as  a  formula 
for derivative of product of three functions. 

It can be used as a formula for doing Q. No. 1 and Q. No. 5 
of this Exercise 5.5. 
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dx 

dx 

dt 
dt 

dx 

dt 

 
 
 
 
 
 
 
 

 

Exercise 5.6 

If x and y are connected parametrically by the equations given in 
dy 

Exercises 1 to 5, without eliminating the parameter, find 
dx 

. 

1. x = 2at2, y = at4. 
Sol.  Given: x = 2at2   and   y = at4 

Differentiating both eqns. w.r.t. t, we have 
dx  

=  
 d 

(2at2) and 
dy  

= 
 d 

(at4) 
dt dt dt dt 

= 2a
 d 

t2 = a
 d 

t4 = a.4t3 
dt dt 

= 2a.2t = 4at = 4at3 

We know that   
dy

 =   
dy / dt 

dx / dt 

4at3 
 

 =    
4at 

= t2. 

2. x = a cos , y = b cos . 

Sol. Given: x = a cos  and y = b cos 

Differentiating both eqns. w.r.t. , we have 
dx   

=   
 d  

(a cos )    and 
dy   

=  
 d  

(b cos ) 

d d d d

a
 d 

d

 d  
cos  = b 

d
 cos 

= – a sin  = – b sin 

We know that   
dy

 
dy / d

=  
dx / d

 b sin 

 a sin 

b 
= 

a 
. 

3. x = sin t, y = cos 2t. 

Sol. Given: x = sin t and y = cos  2t 

Differentiating both eqns. w.r.t. t, we have 

dx  
= cos t    and 

dy
 = – sin 2t

 d
 (2t) 

= – (sin 2t) 2 = – 2 sin 2t 

We know that   
dy

 
dy / dt 

=  
dx / dt 

= –   
 2 sin 2t 

cos t 

= 

= 
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= – 2 .  
2 sin t cos t 

cos t 

= – 4 sin t. 
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t 

t 

dx 

dx 

= 

d 

t 
 4 

 
 

4. x = 4t, y =  
4 

. 

Sol.  Given: x = 4t and y = 
4

 

 
dx   

=  
 d  

(4t) and 
dy

 
=  

 d   4 

dt dt 

 
 d 

dt dt  t 



t
 d 

(4)  4
 d 

t 

= 4 
dt 

t = dt 
2 

dt 

= 4(1) = 4 = 
t(0)  4(1) 

t2 
= –   

t2 

 


 4 

We know that   
dy

 =   
dy / dt 

dx / dt 
= 




t2 



4 
=   

 1 
. 

(t2) 

5. x = cos  – cos 2, y = sin  – sin 2. 

Sol.  Given: x = cos  – cos 2 and    y = sin  – sin 2

 
dx   

=  
 d  

(cos ) –   
 d 

 cos 2  and  
dy  

= cos  – 
 d  

sin 2

d d d d d
d d 

= – sin  – (– sin 2)   
d 

2 = cos  – cos 2 
d  

2

= – sin  + (sin 2) 2 = cos  – cos 2(2) 

= 2 sin 2 – sin  = cos  – 2 cos 2. 

We know that   
dy

 
dy / d

dx / d
= 

cos   2 cos 2 
. 

2 sin 2  sin 

If x and y are connected parametrically by the equations given in 
dy 

Exercises 6 to 10, without eliminating the parameter, find 

6. x = a( – sin ), y = a(1 + cos ). 

Sol.  x  =  a( –  sin  )    and     y = a (1 + cos ) 

Differentiating both eqns. w.r.t. , we have 

dx 
.
 

dx 
a 

 d  

d d
( – sin ) and 

dy
 

 d  
= a 

d
 (1 + cos ) 

= a 
 d  

  
 d  

sin 

 and 

dy   
= a 

 d  
(1)  

 d  
cos 





 d d 

 d 
 d d 



= 
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d 

dx 

 
dx 

d
= a(1 – cos ) and  

dy
 

= a(0 – sin ) = – a sin 

We know that   
dy

 
dy / d

dx / d
=  

    a sin    

a(1  cos ) 

2 sin
  

cos
 





cos 
 



= –     sin   
1  cos 

2 2 
2 sin2

 
 

2 

= – 2 

sin 



2 

= – cot  
2 

. 

= 

= – 
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cos 2t 
  

  

cos 2t 

cos 2t 
  

  

cos 2t 

 
 
 

7. x = 

 
Sol.  We have  x = 

 
dx 

 
, y = 

 
. 

 
and y = 

 

.
 d  

(sin3 t)  sin3 t . 
 d  

(  cos 2t ) 

 
dt   

=  
[By Quotient Rule] 

. 3 sin2 t
 d 

. (sin t)  sin3 t . 
1 

(cos 2t)1/ 2 .
 d 

(cos 2t) 

= dt 2 dt 
cos 2t 

cos 2t . 3 sin2 t cos t  sin3 t . ( 2 sin 2t) 

  2 cos 2t  
= 

cos 2t 

= 
3 sin2 t cos t cos 2t  sin3 t sin 2t 

(cos 2t)3/ 2
 

= 
3 sin2 t cos t cos 2t  sin3 t . 2 sin t cos t 

(cos 2t)3/ 2
 

= 
sin2 t cos t (3 cos 2t  2 sin2 t) 

(cos 2t)3/ 2
 

dy .
 d 

(cos3 t)  cos3 t .
 d 

( cos 2t ) 

and 
dt   

=
  

[By Quotient Rule] 

. 3 cos2 t .
 d 

(cos t)  cos3 t . 
1 

(cos 2t)1/ 2 .
 d 

(cos 2t) 

= dt 

 
cos 2t . 3 cos2 t ( sin t) 

cos 2t 

cos3 t 

2 dt 

 
( 2 sin 2t) 

=
 2 cos 2t  

cos 2t 

 3 cos2 t sin t cos 2t  cos3 t . sin 2t 
= 

(cos 2t)3/ 2
 

= 
 3 cos2 t sin t cos 2t  cos3 t . 2 sin t cos t 

(cos 2t)3/ 2
 

sin t cos2 t (2 cos2 t  3 cos 2t) 
= 

(cos 2t)3/ 2
 

 

 

 

 

 

cos 2t 

cos3 t 

cos 2t 
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 
dy 

dx 
=  

dy/dt 

dx/dt 
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dx 





2 



dt 

 

 





 



 
 

sin t cos2 t (2 cos2 t  3 cos 2t) 
 

 = 
(cos 2t)3/ 2

 

(cos 2t)3/ 2
 

 
 . 

sin2 t cos t (3 cos 2t  2 sin2 t) 

= 
cos t [2 cos2 t  3(2 cos2 t  1)] 

sin t [3(1  2 sin2 t)  2 sin2 t] 
= 

cos t (3  4 cos2 t) 

sin t (3  4 sin2 t) 

= 
 (4 cos3 t  3 cos t) 

3 sin t  4 sin3 t 

 cos 3t 
=    

sin 3t 
= – cot 3t 

Hence  
dy

 = – cot 3t. 

8. x = a 
 

cos t + log tan 
t  

, y = a sin t. 


 2 



Sol. x = a 

cos t  log 

 
tan

 t 


 
 2 


 

 
dx  

= a  

 sin t 

    1     
.
 d   

tan 
 t 



dt  tan
 t    dt 
2 

2 


 
= a  


 sin t 

    1     
. sec2 

t 
. 

1 


 
tan 

t
 

2 
2   2

 cos
 t 

= a  

 sin t  2 .

     1 
. 

1 


 
sin 

 t
 

2 
cos 2 t 


2 

 
= a  


 sin t 

 1 


 
2 sin

 t 
cos

 t 


2 2 
= a  

 
 sin t  

   1     
= a  

  1    
 sin t


 

sin t 
 

sin t 



   

= a 
 1  sin2 t   

=
 

 
 

a cos2 t 
 

 

 sin t  sin t 
 

y = a sin t     
dy

 

 
= a cos t 

 

 
dy 

dx 
=   

dy / dt 

dx / dt 
=  

    a cos t  

 a cos2 t 




sin t cos t 
= 
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d d

 = tan t. 
   sin t   
 

9. x = a sec , y = b tan . 

Sol.  x = a sec  and    y = b tan 

Differentiating both eqns. w.r.t. , we have 

dx   
= a sec  tan  and 

dy  
= b sec2  
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dx 

d 

dx x 





We know that   
dy

 =   
dy / d

dx / d

b sec2 


=  
a sec  tan 

=  
 b sec 

a tan 

b .    
1

 

= cos 



=  

    b  
 
.  

  cos  =  
      b 

=  
b 

 
cosec . 

a . 
sin 

cos 
cos  a sin  a sin  a 

10. x = a(cos  +  sin ), y = a(sin  –  cos ). 

Sol. We have x = a(cos  +  sin ) and y = a(sin  –  cos ) 

 
dx 

d

and 
dy

 

= a(– sin  +  cos  + sin  . 1) = a cos 


= a[cos  – ((– sin ) + cos  . 1)] 

= a [cos  +  sin  – cos ]  = a sin 

dy 
dy 

dx 
=

 

 
 

 d 
dx 

 

 

d

=  
a sin 

a cos 
= tan . 

11. If x = , y = , show that  
dy

 = –  
 y 

. 

 

Sol. Given: x = = (asin1 t )1/ 2   = 
a1/ 2 sin1 t ...(i) 

 
dx = a1/ 2 sin1 t log a  

 d
 

 1 
sin1 t 




dt dt 
 2 





∵ 

 d  
ax  ax log a and 

 d  
af (x)  af (x) log a 

 d   
f (x)





 dx dx dx 



 
dx 

dt 
= a1/ 2 sin1 t log a .  

1
 

2 

      1  

1  t2 
...(ii) 

Again given: y = = (acos1 t )1/ 2 = a1/ 2 cos1 t ...(iii) 

 
dy = a1/ 2 cos1 t  d log a 

 1 
cos1 t 




dt dt 

 2 




 1/ 2 cos1 t 1        1    

a  

  

 

acos1 t 


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dx 

log a .  
2

 


  1  t 


2 



...(iv) 

We know that   
dy

 
dy / dt 

=  
dx / dt 

Putting values from (iv) and (ii), 

1/ 2 cos1 t 1      1    
      a log a 

2 
  

1  t2 



 1/ 2 cos1 t y 

 dy  
=

 

 

  
= 

a 
=  – 

dx a1/ 2 sin1 t log a . 
1       1  
2 

a1/ 2 sin1 t x 

 
(By (iii) and (i)) 

1  t2 
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dx 

dx 
= 

   

x 

 
 

Exercise 5.7 

Find the second order derivatives of the functions given in 
Exercises 1 to 5. 

1.  x2 + 3x + 2. 
Sol. Let y = x2 + 3x + 2 

 
dy 

dx 
= 2x + 3.1 + 0 = 2x + 3 

Again differentiating w.r.t. x, 

2. x20. 
Sol.  Let y = x20 

d2 y 

dx2 

 d      dy 

dx    dx 
= 2(1) + 0 = 2. 

 
dy 

dx 
= 20x19 

Again differentiating w.r.t. x, 

3. x cos x. 
Sol.  Let y = x cos x 

d2 y 

dx2 
= 20.19x18 = 380x18. 

 
dy 

dx 

x  d 
dx cos x + cos x   

 d  
x [By  Product  Rule] 

= – x sin x + cos x 
Again differentiating w.r.t. x, 

d2 y   
= –  

 d  
(x sin x) +   

 d 
 

 

 
 

cos x 

dx2 dx dx 
= –   

 
x 

 d  
sin x  sin x 

 d  
(x)


 – sin x 


  dx dx 




4. log x. 

= – (x cos x + sin x) – sin x = – x cos x – sin x – sin x 
= – x cos x – 2 sin x = – (x cos x + 2 sin x). 

Sol.  Let y = log x  
dy 1

 

Again differentiating w.r.t. x, 
d2 y 

dx2 

 d      1 

dx   x 

 d 
x–1 

dx 

= 

= 

= = 
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x 

x2 5. x3 log x. 

Sol.  Let y = x3 log x 

= (– 1) x–2 =  
 1

 

 
dy 

dx 
x3      d 

dx 

= x3 .  
1

 

 d  
log x + log x   

dx
 

+ (log x) 3x2 

x3 [By Product Rule] 

= x2 + 3x2 log x 

. 

= 



Class 12 Chapter 5 - Continuity and Differentiability 

 11
6 

 

  Call Now For Live Training 93100-87900 

dx 

dx dx 

dx 

= 

 

Again differentiating w.r.t. x, 
d2 y  

= 
 d  

x2 + 3 
 d 

 
 

(x2 log x) 

dx2 dx dx 

= 2x + 3 
 

x2  
 d  

log x  log x 
 d  

x2 




 dx dx 



= 2x + 3 
 

x2 . 
1 
 (log x) 2x 





 x 




= 2x + 3(x + 2x log x) 

= 2x + 3x + 6x log x = 5x + 6x log x 

= x(5 + 6 log x). 
Find the second order derivatives of the functions given in 
exercises 6 to 10. 

6. ex sin 5x. 

Sol.  Let y = ex sin 5x 

 
dy 

dx 
ex   d 

dx 

 d  
sin 5x + sin 5x  

dx
 ex  [By Product Rule] 

= ex cos 5x 
 d 

 5x + sin 5x . ex = ex cos 5x . 5 + ex sin 5x 

dy  
= ex (5 cos 5x + sin 5x) 

Again applying Product Rule of derivatives 
d2 y   

= ex 
 d  

(5 cos 5x + sin 5x) + (5 cos 5x + sin 5x)  
 d  

ex 
 

dx2 dx dx 

= ex (5(– sin 5x) . 5 + (cos 5x) . 5) + (5 cos 5x + sin 5x) ex 

= ex (– 25 sin 5x + 5 cos 5x + 5 cos 5x + sin 5x) 

= ex (10 cos 5x – 24 sin 5x) 
= 2ex (5 cos 5x – 12 sin 5x). 

7. e6x cos 3x. 
Sol.  Let y = e6x cos 3x 

 
dy 

dx 
e6x   d 

dx 

 d  
cos 3x + cos 3x  

dx
 e6x 

= e6x (– sin 3x) 
 d   

(3x) + cos 3x . e6x  
 d   

6x 

 

 
dy 

dx 

= – e6x sin 3x . 3 + cos 3x . e6x . 6 

= e6x (– 3 sin 3x + 6 cos 3x) 

Again applying Product Rule of derivatives, 

d2 y 
e6x   d 

dx2  dx 
(– 3 sin 3x + 6 cos 3x) 

= 

or 

= 
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dx 

+ (– 3 sin 3x 
+ 6 cos 3x)  

 

d  
e6x 
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

 
 

= e6x [– 3 . cos 3x . 3 – 6 sin 3x . 3] 

+ (– 3 sin 3x + 6 cos 3x) e6x . 6 

= e6x (– 9 cos 3x – 18 sin 3x – 18 sin 3x + 36 cos 3x) 

= e6x (27 cos 3x – 36 sin 3x) 

= 9e6x (3 cos 3x – 4 sin 3x). 

8. tan–1 x. 

Sol.  Let y = tan–1 x 

 
dy 

dx 

     1  

1  x2 

Again differentiating w.r.t. x, 

 d2 y   
 

 

  d         1      (1  x2)
 d 

(1)  1
 d

 (1  x2) 

dx2 =  
dx 

 1  x2  = dx dx  
(1  x2)2   

 

= 

9. log (log x). 

(1  x2)0  (2x) 

(1  x2)2   
 

     2x  
= 

(1  x2)2   

Sol.  Let y = log (log x) 

 
dy 

=  
    1  

 d   
log x  d log f (x) 

   1     d
 f (x)




dx log x dx 
∵ 

dx f (x) dx 


=  
    1  

log x 

 

1   
=  

      1  

x x log x 

Again differentiating w.r.t. x, 

 
d2 y   (x log x)

 d 
(1)  1

 d 
(x log x) 

 
 

dx2 
= dx dx  

(x log x)2
 

(x log x) 0  
 

x
 d 

log x  log x 
  d 

(x)



= 
 dx dx 

(x log x)2 

 
x . 

1 
 log x . 1




= – 

10. sin (log x). 

x 

(x log x)2 


 = – (1  log x) 

(x log x)2 



. 

. 

= 
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dx x 

Sol.  Let y = sin (log x) 

 
dy 

dx 
= cos (log x)  

 d 
 

cos (log x) 

x 

(log x) = cos (log x) .  
1

 

Again differentiating w.r.t. x, 

= 
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dx 

    dx dx  

  x  

2 

dx 

 

 
 

d2 y 

dx2 

 
= 

x
 d  

cos (log x)  cos (log x) 
 d  

(x) 

x2 

x[ sin (log x)]
 d 

log x  cos (log x) 

x2 

 x sin (log x) .
 1 

 cos (log x) 

= 
x2 

 
 [sin (log x)  cos (log x)] 

x2 

11. If y = 5 cos x – 3 sin x, prove that 
d2 y 

 
 

dx2 
+ y = 0. 

Sol.  Given: y = 5 cos x – 3 sin x ...(i) 

 
dy 

dx 
= – 5 sin x – 3 cos x 

Again differentiating w.r.t. x, 
d2 y 

dx2 
= – 5 cos x + 3 sin x 

= – (5 cos x – 3 sin x)   – y (By (i)) 

or 
d2 y   

= – y    

dx 

d2 y   
+ y = 0. 

dx2 

12. If y = cos–1  x. Find 
d2 y 

dx2 
in terms of y alone. 

Sol.  Given: y = cos–1  x   x = cos y ...(i) 

  
dy 

dx 
=   

      1  

 
= 

= 

 

=   
   1   

sin y 

 
 

= – cosec y 

(By (i)) 

dy  
= – cosec y ...(ii) 

Again differentiating both sides w.r.t. x, 

d2 y  = –  
 d  

 
 

(cosec y) = – 

 cosec y cot y 

dy 


dx2 dx 
 dx 



= cosec y cot y (– cosec y) (By (ii)) 

= – cosec2 y cot y. 

   1  

 

      1  

 

= 

or 

= . 
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x x 

13. If y = 3 cos (log x) + 4 sin (log x), show that x2y2 + xy1 + y = 0. 
Sol.  Given: y = 3 cos (log x) + 4 sin (log x) ...(i) 

 
dy = (y ) = – 3 sin (log x)  

 d 
  d  log x + 4 cos (log x) log x 

dx 1 dx dx 

or y1 = – 3 sin (log x) .  
1  

+ 4 cos (log x) .  
1

 

Multiplying both sides by  L.C.M.  =  x, 

xy1 = – 3 sin (log x) + 4 cos (log x) 
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x 

dx 

dx 

 
 

Again differentiating both sides w.r.t. x, 
 d d  (xy ) = – 3 cos (log x) log x – 4 sin (log x) 

 d 
 log x 

dx 1 dx dx 

   x 
 d  

y1  + y1    
  d 

x = – 3 cos (log x) .  
1  

– 4 sin (log x) .  
1

 

dx dx x x 
(By Product Rule) 

 xy2 + y1 = –   
[3 cos (log x)  4 sin (log x)] 

Cross-multiplying 

x(xy2 + y1) = – [3 cos (log x) + 4 sin (log x)] 
 x2y2 + xy1 = – y (By (i)) 

 x2y2 + xy1 + y = 0. 

14. If y = Aemx + Benx, show that 
d2 y 

dx2 

dy 
– (m + n)   

dx
 + mny = 0. 

Sol.  Given: y = Aemx + Benx ...(i) 

 
dy   

= Aemx  
 d  

(mx) + Benx 
 d  

(nx) 

∵ 

 d  
ef (x)   ef (x)    d   

f (x)



dx dx dx 
 dx dx 



dy  
= Am emx + Bn enx ...(ii) 

 
d2 y 

 
  

dx2 

 
= Am.emx.m + Bnenx.n 

= Am2 emx + Bn2 enx ...(iii) 

Putting values of y,   
dy

 

d2 y   

and 

dy 

d2 y 

dx2 
from (i), (ii) and (iii) in 

L.H.S. =  
 

dx2 
– (m + n) 

dx  
+ mny 

= Am2emx  +  Bn2enx  –  (m  +  n)  (Am  emx  +  Bn  enx)  +  mn(Aemx 
+ Benx) 

= Am2emx + Bn2enx – Am2 emx – Bmn enx – Amn emx 
– Bn2 enx + Amn emx + Bmn enx = 0 = R.H.S. 

15. If y = 500 e7x + 600 e–7x, show that 
d2 y 

dx2 

 
= 49y. 

Sol.  Given: y = 500 e7x + 600 e–7x ...(i) 

 
dy 

dx 
= 500 e7x (7) + 600 e–7x (– 7) = 500(7) e7x – 600(7) e–7x 

or 
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dx2 

dx2 

 
d2 y 

= 500(7)  e7x  (7)  –  600(7)e–7x(–  7) 

= 500(49) e7x + 600(49) e–7x 

or 
d2 y   

= 49[500 e7x + 600 e–7x] = 49y (By (i)) 

d2 y   
or 

dx2    = 49y. 
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= 

x  1 

 

 

 
16. If ey 

 

(x + 1) = 1, show that 

 
d2 y 

dx2 

 
 dy 2 

= 
 dx  

. 

Sol. Given: ey (x + 1) = 1 

 ey 1  

x  1 

Taking logs of both sides, log ey = log   
   1 

 

or  y log e = log 1 – log (x + 1) 

or y = – log (x + 1)    [...   log e = 1 and log 1 = 0] 

 
dy 

dx 

   1  

x  1 

 d  

dx 
(x + 1) = 

   1   

x  1 
= – (x + 1)–1

 

 
d2 y   

= – (– 1)(x + 1)–2    
  d 

(x + 1) 
 

dx2 dx 

∵

 d 
( f (x))n  n( f (x))n  1

 d   
f (x)





 dx dx 



=
 1  


∵

 d 
(x  1)  1  0  1




(x  1)2 
 dx 





L.H.S. = 

d2 y 

dx2 

  1  
=   

(x  1)2 

 dy 2 
 

 

  1 2 1 
 

  

R.H.S. = 
 dx 

 =  
x  1 

 =   
(x  1)2 

  L.H.S. = R.H.S. i.e., 
d2 y 

dx2 

 dy 2 
= 
 dx  

. 

17. If y = (tan–1  x)2, show that (x2 + 1)2  y2 + 2x(x2 + 1)y1 = 2. 
Sol.  Given: y = (tan–1  x)2 ...(i) 

 y = 2(tan–1 x)  
 d   

tan–1 x 

∵ 

 d  
( f (x))n  n ( f (x))n  1 

 d  
f (x)




1 dx 

 –1 
1  


 dx dx 



2 tan1 x 
 

 

y1 = 2 (tan x) 
1  x2 

   y1  = 
1  x2 

Cross-multiplying, (1 + x2) y1  = 2 tan–1  x 
Again differentiating both sides w.r.t. x, 

= – 
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(1 + x2)  
 d  

y   + y    
 d   

(1 + x2) = 2 .  
     1 

 

dx  1 1  dx 1  x2 

 (1 + x2) y2 + y1 . 2x = 

Multiplying both sides by (1 + x2), 

2 
 

 

1  x2 

(x2 + 1)2 y2 + 2xy1  (1 + x2) = 2. 
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g (x)   

 
 

Exercise 5.8 

 
 f (x) 

(g(x)  0), sin x, cos x, ex, e–x,  log  x  (x > 0)  are  conti- 

nuous and derivable for all real x. 

Note 2: Sum, difference, product of two continuous (derivable) 
functions is continuous (derivable). 

1. Verify Rolle’s theorem for f (x) = x2 + 2x – 8, x  [– 4, 2]. 

Sol.  Given: f (x) = x2 + 2x – 8; x  [– 4, 2] ...(i) 

Here f (x) is a polynomial function of x (of degree 2). 

 f (x) is continuous and derivable everywhere i.e., on (– , ). 

Hence f (x) is continuous in the closed interval [– 4, 2] and 
derivable in open interval (– 4, 2). 

Putting x = – 4 in (i), f (– 4) = 16 – 8 – 8 = 0 

Putting x = 2 in (i), f (2) = 4 + 4 – 8 = 0 

 f (– 4) = f (2) (= 0) 

 All three conditions of Rolle’s Theorem are satisfied. 

From (i), f (x) = 2x + 2. 

Putting   x = c, f (c) = 2c + 2 = 0      2c = – 2 

 c = – 
2 

2 
= – 1  open interval (– 4, 2). 

  Conclusion of Rolle’s theorem is true. 

  Rolle’s theorem is verified. 

2. Examine if Rolle’s theorem is applicable to any of the following 
functions. Can you say some thing about the converse of Rolle’s 
theorem from these examples? 

(i)  f (x) = [x] for x  [5, 9]     (ii)  f (x) = [x] for x  [– 2, 2] 

(iii) f (x) = x2 – 1 for x  [1, 2]. 

Sol.        (i) Given: f (x) = [x] for x  [5, 9] ...(i) 

(of course [x] denotes the greatest integer  x) 

We know that bracket function [x] is discontinuous at all the 
integers  (See  Ex.  15,  page  155,  NCERT,  Part  I).  Hence f 
(x) = [x] is discontinuous at all integers between 5 and 9 i.e., 
discontinuous at x = 6, x = 7 and x = 8 and hence discontinuous 
in the closed interval [5, 9] and hence not derivable in the open 
interval (5, 9).  ...(ii) (... discontinuity  Non-derivability) 

Again from (i), f (5) = [5] = 5 and f (9) = [9] = 9 

 f (5)  f (9) 

 Conditions of Rolle’s Theorem are not satisfied. 

 Rolle’s Theorem is not applicable to f (x) = [x] in  the 
closed interval [5, 9]. 

But converse (conclusion) of Rolle’s theorem is true for this 
function f (x) = [x]. 

i.e.,     f (c) = 0 for every real c belonging to open interval 
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x  c 

= 



= 
 h 

= 

 

 
(5, 9) other than integers. (i.e., for every real c  6, 7, 8) 
(even though conditions are not satisfied). 

Let us prove it. 

Left Hand derivative = Lf (c) =   lim



 f (x)  f (c) 

x  c 

lim 
x  c 

 
Put x = c – h, h  0+, =   lim 

h  0 

[x]  [c] 

x  c 

[c  h]  [c] 

c  h  c 

(By (i)) 

=    lim 
h  0 

[c]  [c] 
 h 

[...   We know that for c  R – Z, as h  0+, [c – h] = [c]] 

=    lim 
h  0 

  0 
lim    0 

h  0 

(...   h  0+    h > 0 and hence h  0) 

= 0 ...(iii) 

Right Hand derivative = Rf (c) =   lim 
x  c 

 f (x)  f (c) 

x  c 

=    lim 
x  c 

[x]  [c] 

x  c 
(By (i)) 

Put x = c + h, h  0+, = 
. . 

lim 
h  0 

[c  h]  [c] 

c  h  c 
= lim 

h  0 

[c]  [c] 

h 

[ . We know that for c  R – Z, as h  0+, [c + h] = [c]] 

=    lim 
h  0 

0 
lim 

h h  0 

(...   h  0+    h > 0 and hence h  0) 

= 0 ...(iv) 

From (iii) and (iv) Lf (c)=R f (c) = 0 

 f (c) = 0 V real c  open interval (5, 9) other than integers 
c = 6, 7, 8. 

(ii) Given: f (x) = [x] for x  [– 2, 2]. 

Reproduce the solution of (i) part replacing closed interval [5, 9] 

by [– 2, 2] and integers 6, 7, 8 by – 1, 0 and 1 lying between – 2 





 





 

 
0 
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and 2. 

(iii) Given: f (x) = x2 – 1 for x  [1, 2] ...(i) 

Here f (x) is a polynomial function of x (of degree 2). 

 f (x)   is   continuous   and   derivable   everywhere   i.e.,   on 

(– , ). 

Hence f (x) is continuous in the closed interval [1, 2] and 

derivable in the open interval (1, 2). 

Again from (i), f (1) = 1 – 1 = 0 
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and f (2) = 22 – 1 = 4 – 1 = 3 

 f (1)  f (2). 

 Conditions of Rolle’s Theorem are not satisfied. 

 Rolle’s theorem is not applicable to f (x) = x2 – 1 in [1, 2]. 

Let us examine if converse (i.e., conclusion) is true for this function given 

by (i). 

From (i), f (x) = 2x 

Put x = c, f (c) = 2c = 0  c = 0 does not belong to open interval (1, 2). 

 Converse (conclusion) of Rolle’s Theorem is also not true for this 

function. 

3. If f : [– 5, 5]  R is a differentiable function and if f (x) does 

not vanish anywhere, then prove that f (– 5)  f (5). 

Sol. Given: f : [– 5, 5]  R is a differentiable function i.e., f  is differentiable 

on its domain closed interval [– 5, 5] (and in particular in open interval 

(– 5, 5) also) and hence is continuous also on closed interval [– 5, 5]

 ...(i) 

To prove: f (– 5)  f (5). 

If possible, let f (– 5) = f (5) ...(ii) 

From (i) and (ii) all the three conditions of Rolle’s Theorem are 

satisfied. 

 There exists at least one point c in the open interval (– 5, 5) such 

that f (c) = 0. 

i.e., f (x) = 0   i.e.,   f (x) vanishes (vanishes      zero) for at least one 

value of x in the open interval (– 5, 5). But this is contrary to given 

that f (x) does not vanish anywhere. 

  Our supposition in (ii)   i.e.,   f (– 5) = f (5) is wrong. 

 f (– 5)  f (5). 

4. Verify Mean Value Theorem if f (x) = x2 – 4x – 3 in the interval 

[a, b] where a = 1 and b = 4. 

Sol.  Given: f (x) = x2 – 4x – 3 in the interval [a, b] where a = 1 and 

b = 4 i.e., in the interval [1, 4] ...(i) 

Here f (x) is a polynomial function of x and hence is continuous and 

derivable everywhere. 

 f (x) is continuous in the closed interval [1, 4] and derivable in the 

open interval (1, 4) also. 

 Both conditions of L.M.V.T. are satisfied. 

From (i), f (x) = 2x – 4 

Put x = c, f (c) = 2c – 4 

from (i) f (a) = f (1) = 1 – 4 – 3 = – 6 
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

 

 
and f (b) = f (4) = 16 – 16 – 3 = – 3 

Putting these values in f (c) = 
 f (b)  f (a) 

, we have
 

b   a 

2c – 4 = 

3 

 3  ( 6) 

4  1 
   2c – 4 = 

 3  6 

3 

 2c – 4 = 
3 

= 1    2c = 5 

5 
 c = 

 L.M.V.T. is verified. 

2 
 open interval (1, 4). 

5. Verify Mean Value Theorem if f (x) = x3 – 5x2 – 3x in the interval [a, 

b]  where  a = 1  and  b = 3.   Find   all c  (1, 3)  for  which f (c) 

= 0. 

Sol.  Given: f (x) = x3 – 5x2 – 3x ...(i) 

In the interval [a, b] where a = 1   and   b   = 3 i.e., in the interval 

[1, 3]. 

Here f (x) is a polynomial function of x (of degree 3). Therefore, f (x) is 

continuous and derivable everywhere i.e., on the real line (– , ). 

Hence f (x) is continuous in the closed interval [1, 3] and derivable in 

open interval (1, 3). 

 Both conditions of Mean Value Theorem are satisfied. 

From (i), f (x) = 3x2 – 10x – 3 

Put x = c, f (c) = 3c2 – 10c – 3 ...(ii) 

From (i), f (a) = f (1) = 1 – 5 – 3 = 1 – 8 = – 7 

and f (b) = f (3) = 33 – 5 . 32 – 3.3 = 27 – 45 – 9 = 27 – 54 = – 27 

Putting these values in the conclusion of Mean Value Theorem i.e., 

f (c) =
 f (b) – f (a) 

, we have 
b – a 

3c2 – 10c – 3 = 
 27  ( 7) 

3  1 

 27  7 
= 

2
 

20 
= –   

2
 = – 10 

   3c2 – 10c – 3 + 10 = 0    3c2 – 10c + 7 = 0 

 3c2 – 3c – 7c + 7 = 0      3c(c – 1) – 7(c – 1) = 0 

 (c – 1)(3c – 7) = 0 

   Either c – 1 = 0 or  3c – 7 = 0 
7 

i.e., c = 1  open interval (1, 3) or 3c = 7  i.e., c =  
3

 

which belongs to open interval (1, 3). 

Hence mean value theorem is verified. 
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Now we are to find all c  (1, 3) for which f (c) = 0. 

  From (ii),   3c2 – 10c – 3 = 0 
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34 

3 

3 

b     a 

= 

 
 

 
Solving for c, c = 

 b  b2  4ac 

2a 

10    100  36 

6 

= 
10    136 

= 
10    4  34   

= 
10  2  

= 2 
 5  34  

= 
5   34 

6 6 6  6  3 

Taking positive sign, c =  
5    34

 

 



> 3 and hence  (1, 3) 

Taking negative sign, c = 
5  34 

is negative and hence  (1, 3). 

6. Examine the applicability of Mean Value Theorem for all 

the three functions being given below: 

(i)  f (x) = [x] for x  [5, 9]  (ii) f (x) = [x] for x  [– 2, 2] 

(iii) f (x) = x2 – 1 for x  [1, 2]. 

Sol. (i) Reproduce  solution  of  Q.  No.  2(i)  upto  eqn.  (ii) 

 Both conditions of L.M.V.T. are not satisfied. 

 L.M.V.T. is not applicable to f (x) = [x] for x  [5, 9]. 

(ii) Reproduce solution of Q.  No.  2(i)  upto  eqn.  (ii)  replacing [5, 9] 

by [– 2, 2] and integers 6, 7, 8 by – 1, 0 and 1 lying between – 

2 and 2. 

   Both conditions of L.M.V.T. are not satisfied. 

 L.M.V.T. is not applicable to f (x) = [x] for x  [– 2, 2]. 

(iii) Given: f (x) = x2 – 1 for x  [1, 2] ...(i) 

Here f (x) is a polynomial function (of degree 2). 

Therefore f (x) is continuous and derivable everywhere i.e., 

on the real line (– , ). 

Hence f (x) is continuous in the closed interval [1, 2] and 

derivable in open interval (1, 2). 

 Both conditions of Mean Value Theorem are satisfied. 

From (i), f (x) = 2x 

Put x = c, f (c) = 2c 

From (i), f (a) = f (1) = 12 – 1 = 1 – 1 = 0 

f (b) = f (2) = 22 – 1 = 4 – 1 = 3 
Putting  these  values  in  the  conclusion  of  Mean  Value 

Theorem i.e., in f (c) = 
 f (b)  f (a) 

, we have
 

 

 

 

c

 

3
 

2 

= 
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

 

 
 (1, 2) 

2c   

= 
3 

 0
 

2   1 

   2c = 3 

 Mean Value Theorem is verified. 
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dx 

dx dx 

 
 

MISCELLANEOUS EXERCISE 

 
1. (3x2 – 9x + 5)9. 

Sol.    Let y = (3x2 – 9x + 5)9
 

  
dy 

dx 
= 9(3x2 – 9x + 5)8    

 d 
(3x2 – 9x + 5) 


∵

 d   
( f (x))n  n( f (x))n  1 

  d   
f (x)





 dx dx 



= 9(3x2 – 9x + 5)8 [3(2x) – 9.1 + 0] 

= 9(3x2 – 9x + 5)8 (6x – 9) = 27(3x2 – 9x + 5)8 (2x – 3). 

2. sin3  x + cos6  x. 

Sol.  Let y = sin3 x + cos6 x = (sin x)3 + (cos x)6
 

  
dy 

dx 
= 3(sin x)2  d 

 sin x + 6 (cos x)5    
 d 

 cos x 


∵

 d   
( f (x))n  n( f (x))n  1 

  d   
f (x)





 dx dx 



= 3 sin2 x cos x – 6 cos5 x sin x 

= 3 sin x cos x (sin x – 2 cos4 x). 

3. (5x)3 cos 2x. 

Sol.  Let y = (5x)3 cos 2x ...(i) [Form ( f (x)) g(x)] 

Taking logs of both sides of (i) we have 

log y = log (5x)3 cos 2x = 3 cos 2x log (5x) 

Differentiating both sides w.r.t. x, we have 
d d 

dx 
(log y) = 3 

dx 
(cos 2x log (5x)) 

 
1  dy = 3 


cos 2x 

  d   
log (5x)  log (5x)

 d 
cos 2x




y  dx 
 dx dx 



= 3 

cos 2x .

 1    d 
5x  log (5x) ( sin 2x)

 d   
2x




 5x dx dx 



or 
1 dy = 3 


cos 2x .

 1 
. 5  2 sin 2x log 5x




y  dx 
 5x 



Cross-multiplying,  
dy

 = 3y 
 cos 2x 

 2 sin 2x log 5x 



dx 

 x 



Putting the value of y from (i), 
dy 

= 3(5x)3 cos 2x   
 cos 2x 

 2 sin 2x log 5x 


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dx 

4. sin–1  (x 


 x 




), 0  x  1. 

Sol.   Let y = sin–1 (x ) = sin–1 (x3/2) 
∵ x  x1  . x1/ 2   x1  1/ 2   x3/ 2 

 
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1  ( f (x))2 

 

 

 

 

 

(   2x  7) 


    

 
 cos 

   

  
(2x  7)     

 
(2x  7) 


 

 2    



 

 

 

 

 2 

  
 

 

 

d 

dx 

  1 d  
f (x)

 




  

dy 
=

 1 d  
x 

 d  
3/ 2 ∵ sin 

 
f (x) 



dx 

dx dx 
 





=
 1 3 

x1/2 = 
  3  x 

=  
3 

.
 

2 2 2 

cos–1 x 
5. 2 , – 2 < x < 2. 

2x + 7 

 

Sol. Let y = 

Applying Quotient Rule, 

dy 
d 

cos1 
x 
 cos1 

x  d 
 

dx  
=

 
dx 2 2 dx 

2 

= 

 
1  1 d d 

 
  

 
 

 
n n  1   d 





∵ 

dx 
cos f (x)  f (x) and 

dx 
(f (x)) 

  2 1 1 cos1 x
 

 n(f (x)) 
dx  

f (x)



 .    2 2 

or 
dy  

= 4  x2 2 2   2x  7 

dx 2x  7 


∵

 1 


 1 


 1 


 2  
4  x2 




 
 
 

 
cos1 

x 


 
  2x  7 

 2    
4  x2 2x  7 

 
 1  x 

   2x  7  cos 
2 



=    = –  

2x  7    4  x2    2x  7 (2x  7) 

 

 

 
 

 

 

 

1 
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 
 

2x  7    4  x2 cos1 
x 


= – 
 2  .  

(2x  7)3/2 



 
 
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

2 





Differentiate w.r.t. x, the following functions in Exercises 6 to 11. 

6.  cot–1  
  1 + sin x +   1 – sin x  

, 0 < x <  
 

.
 


 

1 + sin x – 1 – sin x  2 

–1   
    1  sin x  

Sol.  Let y = cot   1  sin x  ...(i), 0 < x < 
2

 

 

Let us simplify the given inverse T-function 

 
Now = 

 

= 

 

Again = 

 

= 

...(iii) 

 
 

= cos 
x

 

 

 
= cos 

x
 

2 

 
 

 
x 

+ sin 
2

 

 

 
– sin

 x
 

2 

 
 

 
...(ii) 

(Given: 0 < x x < and therefore 

< 
2 

. Dividing by 2, 0 < 
2 4

 

cos 
x 

> sin 
x 

 cos 
x 

– sin 
x 

> 0) 
2 2 

Putting values from (ii) and (iii) in (i), we have 
 

cos 
x 
 sin 

x 
 cos 

x 
 sin 

x 



 

2 cos 
x 


y = cot–1 
 2 2 2 2  = cot–1 

 2 

 
x x x x 


  x 


 

cos 
2 
 sin 

2 
 cos 

2 
 sin 

2 

 


 

2 sin 
2 




= cot–1  cot 
x  

= x 
 

dy = 
1 

(1) = 
1 

. 


 

2 

 2 dx 2 2 

7. (log x)log x, x > 1. 

Sol.  Let y = (log x)log x, x > 1 ...(i) [Form ( f (x)) g(x)] 

Taking logs of both sides of (i), we have 

log y = log (log x)log x  = log x log (log x) [.
.
.  log mn = n log m] 

Differentiating both sides w.r.t. x, we have 

 
  2 2 

 
cos 

x 
 sin 

x 
2

 



 2 


 
  2 2 

 
cos 

x 
 sin 

x 
2

 



 2 


2 2 
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dx 

dx 

dx 

 d  
(log y) =  

 d 
 

(log x log (log x)) 

 
1   dy 

y   dx 
= log x  

 d 
 log (log x) + log (log x)  

 d 
 

dx 

 
log x 

(By Product Rule) 
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+ 

= (sin – cos ) 

 
 

 
1 dy = log x .  

   1        d   
log x + log (log x) .  

1
 

y dx log x   dx 



x 
 d 

log f (x) 
   1    d

 
 
f (x)




∵ 
dx f (x) dx 





 
1  dy 

y  dx 

 
1 log (log x) 

x x 

 

1  log (log x) 

x 

 
dy 

= y 
 1  log (log x) 

dx 

 x 




dy Putting the value of y from (i), = (log x)log x 
 1  log (log x)  

.
 

dx 

 x 




8. cos (a cos x + b sin x) for some constants a and b. 

Sol.  Let y = cos (a cos x + b sin x)  for some constants a and b. 

 
dy 

dx 

 d  
= – sin (a cos x + b sin x) 

dx
 (a cos x + b sin x) 


∵ 

 d  
cos f (x)   sin f (x) 

 d  
f (x)





 dx dx 



= – sin (a cos x + b sin x) [– a sin x + b cos x] 

= – (– a sin x + b cos x) sin (a cos x + b sin x) 

= (a sin x – b cos x) sin (a cos x + b sin x). 

9. (sin x – cos x)sin x – cos x, 
  

< x <  
3 

. 

4 4 

Sol.  Let y = (sin x – cos x)sin x – cos x ...(i) [Form ( f (x)) g(x)] 

Taking logs of both sides of (i), we have 

log y = log (sin x – cos x)(sin x – cos x)
 

= (sin x – cos x) log (sin x – cos x) [...  log mn = n log m] 

Differentiating both sides w.r.t. x, we have 

d 

dx 
log y = (sin x – cos x) 

d 

dx 
log (sin x – cos x) 

+ log (sin x – cos x) . 

 

 
d 

dx 
(sin x – cos x) 

(By Applying Product Rule on R.H. Side) 

 
1  dy 

y  dx 
x x

 

 

= = 
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1  
(sin x 
 cos 
x) 

 d  

dx 
(sin x – cos x) 

+ log (sin x – cos x) . (cos x + sin x) 
 d 

log f (x) 
   1    d   

f (x)

∵ 

dx f (x) dx 



 

1  dy 

y  dx 

 

= (cos x + sin x) + (cos x + sin x) log (sin x – cos x) 

= (cos x + sin x) [1 + log (sin x – cos x)] 
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dx 

x 

dx 

dx 

dx 

dx 

 
 

 
dy 

dx 
= y (cos x + sin x) [1 + log (sin x – cos x)] 

Putting the value of y from (i), 

dy 
= (sin x – cos x)(sin x – cos x)  (cos x + sin x) [1 + log (sin x – cos x)] 

10. xx + xa + ax + aa, for some fixed a > 0 and x > 0. 

Sol. Let y = xx + xa + ax + aa 

 
dy  

=  
 d  

xx  +  
 d  

xa  +  
 d  

ax  +  
 d  

aa 

dx dx dx dx dx 

=  
 d  

xx + a xa – 1 + ax log a + 0 ...(i) 

[...  aa is constant as 33 = 27 is constant] 

To find  
 d  

(xx):   Let u = xx ...(ii) ( f (x)) g(x)] 

 Taking logs on both sides of eqn. (ii), we have 
log u = log xx = x log x 

  
d 

dx 

 d  
log u =  

dx
 (x log x) 

 
1  du 

u dx 
x

 d 

dx 

 d  
(log x) + log x  

dx
 x (Product Rule) 

= x . 
1
 + log x . 1 = 1 + log x 

 
du 

dx 

 
= u (1 + log x) 

Putting the value of u from (ii),
 d  

xx = xx (1 + log x) 

Putting this value in eqn. (i), 

dy 
= xx (1 + log x) + a xa – 1 + ax log a. 

 

11.  xx2 – 3   +  (x – 3)x
2

 for x > 3. 

Sol.  Let y = xx2 
 3 + (x  3)x

2

 for x > 3 

(Caution. For types ( f (x)) g(x)    (l(x))m(x)      or ( f (x)) g(x)  l(x) 
or ( f (x)) g(x)  k where k is a constant, 
Never begin by taking logs of both sides as 

log (m  n)  log m  log n) 

= 



Class 12 Chapter 5 - Continuity and Differentiability 

 14
3 

 

  Call Now For Live Training 93100-87900 
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Put u = xx2  3 and    v = (x  3)x2

  y = u + v 

 
dy 

dx 

du dv 

dx dx 
...(i) 

Now  u = x(x2 
 3) [Type ( f (x)) g(x)] 

 Taking logs of both sides, we have 

= 



Class 12 Chapter 5 - Continuity and Differentiability 

 14
4 

 

  Call Now For Live Training 93100-87900 

dx dx 

x 

 

dx 

dx 





dx 





 

 
log u = log 

 
x(x2 

 3) = (x2 – 3) log x [...   log mn = n log m] 

Differentiating both sides w.r.t. x, we have 

1 du 

u  dx 
= (x2 – 3)  

 d 
 log x + log x  

 d 
 (x2 – 3) 

= (x2 – 3) 
1
 

1  du x2  3 
 

 

+ log x . (2x – 0) 

du  x2  3 
 2x log x







 
u  dx  

=
 x 

+ 2x log x  
dx   

= u 
 x 



(x2 
 3) du (x2 

 3) 

 x2  3 
 2x log x 





Putting  u =  x ,  

dx   
=  x  x  ...(ii) 

Again v = (x  3)x2
 

 

[( f (x)) g(x)] 

  Taking logs of both sides, we have 

log v = log (x  3)x
2

 = x2 log (x – 3) [...    log mn = n log m] 

 
d  

dx 

 d  
log v =  

dx
 (x2 log (x – 3)) 

 
1  dv 

v    dx 
x2  d 

dx 
log (x – 3) + log (x – 3)

 d 
x2 

x2    1  

x  3 

 d 
(x – 3) + log (x – 3) . 2x 

 
1  dv 

v    dx 

x2 

x  3 
+ 2x log (x – 3) 

 
dv  

= v  
  x2     

 2x log (x  3)



dx  x  3 



Putting v = (x  3)x2 , 

dv x2  x2  2x log (x  3)



dx 
= (x  3) 

 
 

 x  3 
 ...(iii) 


Putting values of 
du

 and 
dv

 from (ii) and (iii) in (i), we have 

= 

= 



= 
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dx 

  

2 

 

2 

dy (x2 
 3)   

 x2  3 
 2x log x







 (x 
x2     x2  2x log (x  3)




dx   
=  x 

dy 

 + 3) 
  x  3 

 .
 

12. Find 
dx   

if y = 12(1 – cos t) and x = 10(t – sin t), 

– 
  

< t <  
 

. 

Sol. Given: y = 12(1 – cos t) and x = 10(t – sin t) 
Differentiating both equations w.r.t. t, we have 

x 
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1  ( f (x))2 dx 

 

    

   

 

dt 

dx 

∵ 

 
 

dy  
= 12

 d 
(1 – cos t) and 

dx   
= 10

 d 
(t – sin t) 

dt dt dt dt 

= 12(0 + sin t) = 12 sin t   and 
dx

 = 10(1 – cos t) 

We know that 
dy

 = 
dy / dt 

dx / dt 

    12 sin t  

10(1  cos t) 
t t 

 

cos
 t

 

= 
6 

. 2 sin 
2 

cos 
2

 
 

 
= 

6 2   = 
6 t 

5 2 sin2
 t

 
2 

5  sin
 t

 
2 

5 
cot 

2 
. 

dy 
13. Find 

dx
 if y = sin–1 x + sin–1

 , – 1  x  1. 

Sol.  Given:    y = sin–1 x + sin–1
 1 – x2 

 
dy 

dx 
+ 

 
 d  

sin1 




 d 

dx 

f (x)  
1
 

 

 
d 

f (x)



 
dy  

=
 1  

dx 1 – x2 

+
 1 1 

(1 – x2)–1/2  
  d 

(1 – x2) 

1  (1  x2)   2 dx 

= 

 
=

 1  

+
 1  

1  1  x2 

+ 
1 

  1 
(– 2x) 

2 

=
 1 

–
 x  

x 

or 
dy 

dx 

 
– = 0. 

14. If x 

 

 

Sol. x 

 

   

 

   

1  ( 1 – x2 )2   
 

   

 

    



 



   

 

1+  y 
 

= 

dx 

= 

= 
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= . 

dx 

1  

+ 
y
 
= 0, for – 
1 < x < 1, 
prove that 

dy – 1  

dx (1 + x)2 

+ y = 0. ...(i) (given) 

We shall first find y in terms of x because y is not required in the 

value of 
dy

 
      

= 
(1  x)2 

to be proved. 

From eqn. (i), x =  – y 

Squaring both sides, x2 (1 + y) = y2 (1 + x) 

or x2 + x2y =y2 + y2x or x2 – y2 = – x2y + y2x 
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

dx 

dx dx 
  

y   


b 

= – . 

. . 

 

 

or (x – y) (x + y) = – xy (x – y) 

Dividing both sides by (x – y)  0 ( . 

x + y = – xy or y + xy = – x 

 
x  y) 

 y(1 + x) = – x    y = – 

Differentiating both sides w.r.t. x, we have 

    x  

1  x 

(1  x)
 d 

(x)  x
 d 

(1  x) 
dy   

=  – dx dx  
dx (1  x)2

 

= –  
(1  x) . 1  x . 1 

(1  x)2 

1 
 

 

(1  x)2 

15. If (x – a)2 + ( y – b)2 = c2, for some c > 0, prove that 

  dy 2 
3/ 2

 


1+ 

 dx 

 

d2 y 
 

dx2 
is a constant independent of a and b. 

Sol. The given equation is (x – a)2 + ( y – b)2 = c2 ...(i) 
Differentiating both sides of eqn. (i) w.r.t. x, 

2(x – a) + 2(y – b) 
dy 

= 0 
 

or 2( y – b) 
dy

 = – 2(x – a)  
dy

 = – 
 x  a 

 


...(ii) 

Again differentiating both sides of (ii) w.r.t. x, 

2  

( y  b) . 1  (x  a) 

dy 


d y 


dx2 
=

 

dy 

 
( y  b)2 

dx 

Putting the value of 
dx 

from (i), 

 

( y  b)  (x  a) 

  (x  a)  
 

(y  b)  

(x  a)2 
d2 y 


     y  b      y  b  







dx2 

      

( y  b)2 
= 

   

(y  b)2
 

= 
 [(y  b)2  (x  a)2 ] 

(
y 
 

b
)
3

 

dy 



= 
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d2 y 

 c
2 

 
 = 

(
y 
 

b
)
3

 

[By (i)] 
...(iii) 

Putting values of 

expression 
dx   

and 
 

 

dx2 
from  (ii)  and  (iii)  in  the given 
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dx 

dy  

  dy dy  

dy 



= 

= 



= 

 
 

  dy 2 
3/ 2

  (x  a)2 
3/ 2

 
 

1   
dx 

  
1  

(y  b)2 


  

d2 y 

dx2 


 

, it is = 

   

 c2 
 

(y  b)3
 

= 
[(y  b)2  (x  a)2 ]3/ 2

 

(y  b)3
 

( y  b)3
 

 

 c2 
[... (( y – b)2)3/2 = ( y – b)3] 

Putting (x – a)2 + (y – b)2 = c2 from (i) 

(c2)3/ 2 
 

 

 c2 

 c3 
=   

c2 

 
= – c 

which is a constant and is independent of a and b. 
16. If cos y = x cos (a + y) with cos a   1, prove that 

dy 
=  

cos2 (a + y) 
.
 

dx sin a 

Sol. Given: cos y = x cos (a + y) 

 x =  
     cos y  

cos (a  y) 

 
...(i) 

(We have found the value of x because x is not present in the required 

value of 
dy 

) 
 

Differentiating both sides of (i) w.r.t. y, 
dx

 

Applying Quotient Rule, 

 d         cos y 

dy 
 

cos (a  y) 



cos (a  y)
 d  

cos y  cos y 
 d  

cos (a  y) 

dy cos2 (a  y) 

dx cos (a  y) ( sin y)  cos y ( sin (a  y)) 

dy cos2 (a  y) 
 d 
∵ 

dy 
cos (a + y) = – sin (a + y)  

 d
 (a + y) 

= – sin (a + y) (0 + 1) = – sin (a + y) 





dx  cos (a  y) sin y  sin (a  y) cos y 

dy cos2 (a  y) 

sin (a  y) cos y  cos (a  y) sin y 

= 

or 

or 

× 

= 

dx 

= 
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cos2 (a  y) 

= 
sin (a  y  y) 

cos2 (a  y) 

  sin a  

cos2 (a  y) 

[... sin A cos B – cos A sin B = sin (A – B)] 

= 
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dx 

dt 

dt 

dx 

at 

= 
/  

 
 

Taking reciprocals  
dy

 = 
cos2 (a  y) 

.
 

sin a 

 
 

d2 y 
17. If x = a (cos t + t sin t) and y = a (sin t – t cos t), find 

Sol.  Given: x = a (cos t + t sin t) and y = a (sin t – t cos t) 
Differentiating both eqns. w.r.t. t, we have 

dx2 
.
 

dx 
= a 

 
 sin t 

 d 
t sin t 


 dy and = a 

 
cos t 

 d 
(t cos t) 




dt 
 dt 

 dt 
 dt 




= a 
 
 sin t  t

 d 
sin t  sin t

 d 
t 




 dt dt 

and 
dy 

= a 
 

cos t  
 

t
 d 

(cos t)  cos t
 d 

(t)



dt 

 

  dt dt 
 




 
dx 

dt 

and 
dy

 

 
dx 

dt 

and 
dy

 

 

= a (– sin t + t cos t + sin t) 

 
= a (cos t – (– t sin t + cos t)) 

 
= at cos t ...(i) 

 
= a(cos t + t sin t – cos t) = at sin t 

 

We know that  
dy

 
dy     dt 

dx / dt 
=

 

at sin t 

at cos t 
= 

sin t 

cos t 
= tan t 

Now differentiating both sides w.r.t. x, we have 
d2 y   

=   
 d 

(tan t) = sec2 t   
 d 

(t)  Note 
 

dx2 dx 

= sec2  t  
 dt

 
dx 

 
= sec2 t 

dx 

1 
 

 

at cos t 

 

(By (i)) 

= sec2 t . 
sec t

 
sec3 t 

 
 = 

at 

18. If  f (x)  =    x  3,  show  that  f (x)  exists  for  all  real  x  and 
find it. 

Sol.   Given:  f (x) =  x 3 = x3 if x  0   ...(i)  [...  x  = x if x  0] 

. 
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. . 
and f (x)  =    x  3  =  (–  x)3   =  –  x3  if  x  <  0 

[ . 
Differentiating both eqns. (i) and (ii) w.r.t. x, 

...(ii) 
 x  = – x if x < 0] 

f (x) = 3x2    if    x > 0 and    f (x) = – 3x2 if x < 0 ...(iii) 
(At x = 0, we can’t write the value of f (x) by usual rule of derivatives 
because x = 0 is a partitioning point of values of f (x) given by (i) and 
(ii) 
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dx 

dx 

dx dx 

 
 

    f (x) = 6x    if    x > 0    and    = – 6x    if    x < 0 ...(iv) 
   From (iv), f (x) exists for all x > 0 and for all x < 0 
i.e.,     for all x  R except at x = 0 ...(v) 
Let us discuss derivability of f (x) at x = 0 

Lf (0) = lim 
x  0 

 f (x)  f (0) 

x  0 
lim 

x  0 

 x3  0 
 

 

x 
[By (ii) and (i)] 

=   lim 
x  0 

– x2 = 0 (On putting x = 0) 

 
Rf (0) = 

 
lim 

x  0 

 f (x)  f (0) 

x  0 
lim 

x  0 

x3  0 
 

x  0 

 
[By (i)] 

=   lim 
x  0 

x2 = 0 (On putting x = 0) 

 Lf (0) = Rf (0) = 0 
   f (x) is derivable at x = 0 and f (0) = 0 ...(vi) 
Let us discuss derivability of f (x) at x = 0 

Lf (0) = 
 

lim 
x  0 

 f (x)  f (0) 

x  0 
lim 

x  0 

 3x2  0 
 

 

x 

 
 

(By (iii) and (vi)) 

=   lim 
x  0 

(– 3x) = – 3(0) = 0 (On putting x = 0) 

Rf (0) = lim 
x  0 

 f (x)  f (0) 

x  0 
=   lim 

x  0 

3x2  0 
 

 

x 
(By (iii) and (vi)) 

=   lim 
x  0 

3x = 3(0) = 0 (On putting x = 0) 

 Lf (0) = Rf (0) = 0 
    f (x) is derivable at x = 0 and f (0) = 0 ...(vii) 
From (iv) and (vii), f (x) exists for all real x and f (x) = 6x if 
x > 0 and = – 6x if x < 0 and f (0) = 0. 

19. Using mathematical induction, prove that  
 d  

(xn) = nxn – 1 

for all positive integers n. 

Sol.  Let P(n): 
d 

 

then P(1):  
 d 

 

 P(1) is true. 

(xn) = nxn – 1
 

(x1) = 1x0 or 
 d 

 

 

 
(x) = 1 which is true. 













 









= 

= 

= 
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dx 

dx 

dx dx dx 

Assume P(k) is true. i.e., let 
 d 

 
(xk) = kxk – 1 ...(i) 

Now 
 d 

 (xk + 1) =  
 d 

 (xk . x) =  
 d 

 (xk) . x + xk .  
 d 

 

 
(x) 


∵ 

 d  
(uv)  

du 
v  u 

dv



 dx dx dx 

= kxk – 1  . x + xk  . 1 [Using (i)] 
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 dx dx 

 

 

dx 

dx dx 

dx 

dx 

 

 
= kxk  + xk  = (k + 1) xk  P(k + 1) is true. 

Hence by P.M.I., the statement is true for all positive integers n. 

20. Using the fact that sin (A + B) = sin A cos B + cos A sin B 

and the differentiation, obtain the sum formula for cosines. 

Sol. Given. sin (A + B) = sin A cos B + cos A sin B 

Assuming A and B are functions of x and  differentiating  both 

sides w.r.t. x, we have 

cos (A + B) .  
 d 

(A + B) = 
 d 

(sin A) . cos B + sin A . 
 d  

(cos B)



dx 

 dx dx 



+ 
 d 

(cos A) . sin B + cos A .
 d 

(sin B)




 dx dx 



 cos (A + B) 

 

dA 
 

dB 


dA 
= cos A .   

dx
 . cos B + 

sin A (– sin B) 
dB  

– sin A  
dA

 
dB 

. sin B + cos A . cos B   
dx

 

= (cos A cos B – sin A sin B) 
dA

 

 
 

or cos (A + B) 

 
 
 dA 

 
dB 

 dx dx 

dB 
+ (cos A cos B – sin A sin B)   

dx
 

= (cos A cos B – sin A sin B) 
 dA 

 
dB 

 dx dx 

Dividing both sides by  
dA  

+  
dB 

, we have 

cos (A + B) = cos A cos B – sin A sin B 

which is the sum formula for cosines. 

21. Does there exist a function which is continuous everywhere 

but not differentiable at exactly two points? 

Sol.  Yes, there exist such function(s). 
 

 

–  1 2 

For example, let us take f (x) =  x – 1  +  x – 2  ...(i) 

Let us  put  each  expression  within  modulus  equal  to  0  i.e., x 

– 1 = 0 and x – 2 = 0 i.e., x = 1 and x = 2. 

These two real numbers x = 1  and  x  =  2  divide  the  whole  real 

line (– , ) into three sub-intervals (– , 1], [1, 2] and [2, ). 

In (– , 1] i.e., For x   1, x –  1    0  and  x –  2    0  and 

therefore  x – 1  = – (x – 1) and  x – 2  = – (x – 2) 
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 From (i), f (x) = – (x – 1) – (x – 2) 

= – x + 1 – x + 2 = 3 – 2x  for x  1 ...(ii) 

In [1, 2] i .e.,  for 1  x  2, x – 1  0 and x – 2  0 and 
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therefore  x – 1  = x – 1 and  x – 2  = – (x – 2). 

From (i), f (x) = x – 1 – (x – 2) = x – 1 – x + 2 = 1 for 

1  x  2 ...(iii) 

Again in [2, ) i.e., for x  2, x – 1  0 and x –  2    0  and 

therefore 

 x – 1  = x – 1 and  x – 2  = x – 2. 

   From (i) f (x) = x – 1 + x – 2 = 2x – 3 for x  2 ...(iv) 

Hence function (i) given in modulus form can be expressed as piece-

wise function given by (ii), (iii) and (iv) 

i.e.,    f (x) = 3 – 2x    for   x  1 ...(ii) 

= 1 for   1  x  2 ...(iii) 

= 2x – 3    for    x  2 ...(iv) 

Now the three values of f (x) given by (ii), (iii) and (iv) are 

polynomial functions and constant function and hence are 

continuous and derivable for all real values of x except possibly at 

the partitioning points x = 1 and x = 2. ......................................... (v) 
To examine continuity at x = 1 

Left Hand limit = lim 
x  1 

f (x) = lim 
x  1 

(3 – 2x) [By (ii)] 

Put x = 1; = 3 – 2 = 1 

Right Hand Limit = lim 
x  1 

f (x) = lim 
x  1 

1 [By (iii)] 

Put x = 1; = 1 

 lim 
x  1 

f (x) = lim 
x  1 

f (x) (= 1) 

 lim 
x  1 

f (x) exists and = 1 = f (1) (... From (iii) f (1) = 1] 

   f (x) is continuous at x = 1 ...(vi) 
To examine derivability at x = 1 

Left Hand derivative = Lf (1) = lim 
x  1 

 f (x)  f (1) 

x  1 

=   lim 
x  1 

 
=   lim 

x  1 

3  2x  1 

x  1 

 2x  2   
=

 

x  1 

 

 
lim 

x  1 

[By (ii) and f (1) = 1 (proved above)] 

 2(x  1) 

x  1 

lim 
x  1 

(– 2) = – 2 

Right Hand derivative = Rf (1) = lim 
x  1 

– – 

 

– 

– 

– 

– – 

– 



= 
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 f (x)  f (1) x  1 

=   lim 
x  1 

 
=   lim 

x  1 

1  1 

x  1 

   0   
=

 

x  1 

 

 
lim 

x  1 

 
 

  0  

Non-zero 

(By (iii)) 

[x  1+       x > 1      x – 1 > 0      x – 1  0] 



 
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

 
 

= lim 0 = 0 
x  1 

  Lf (1)  Rf (1 
   f (x) is not differentiable at x = 1 ...(vii) 
To examine continuity at x = 2 

Left hand limit = 

 
Right Hand Limit = 

lim 
x  2 

lim 
x  2 

f (x) = 

f (x) = 

lim 
x  2 

lim 
x  2 

1 (By (ii)) = 1 

(2x – 3) [By (iv)] 

Putting x = 2, = 4 – 3 = 1 

 lim 
x  2 

f (x) = lim 
x  2 

f (x) (= 1) 

 lim 
x  2 

f (x) exists and = 1 = f (2) [...   From (iii), f (2) = 1] 

   f (x) is continuous at x = 2 ...(viii) 
To examine derivability at x = 2 

Lf (2) = lim 
x  2 

 f (x)  f (2) 

x  2 
=   lim 

x  2 

1  1 

x  2 
(By (iii)) 

=   lim 
  0 

 

. . 
x  2        Non-zero 

[ . x  2–        x < 2      x – 2 < 0       x – 2  0] 

= 

 
Rf (2) = 

lim 
x  2 

 
lim 

x  2 

0 = 0 

 
 f (x)  f (2) 

x  2 

 
 

lim 
x  2 

 

2x  3  1 

x  2 

 

 
[By (iv)] 

=   lim 
x  2 

2x  4 

x  2 
=   lim 

x  2 

2(x  2) 

x  2 
=   lim 

x  2 
2 = 2 

   Lf (2)  Rf (2) 

   f (x) is not differentiable at x = 2 ...(ix) 

From (v), (vi) and (viii), we can say that f (x) is continuous for 

all real values of x i.e., continuous everywhere. 

From (v), (vii) and (ix), we can say that f (x) is  not  differentiable 

at exactly two points x = 1 and x  = 2 on the real line. 

 
22. If y = 

 
 

dy 

dx  
=

 

f (x)  g(x) h(x) l m

 n 

a b c 

f (x) g(x) h(x) l m

 n 









 







 

  

= 
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a b c  
, prove that 

 

 
. 

f (x) g(x) h(x) 

Sol.  Given: y = l m n 

a b c 
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dx dx 

dx 

dx 

= – 

 

 
Expanding the determinant along first row, 

y = f (x) (mc – nb) – g(x) (lc – na) + h(x) (lb – ma) 

  
dy 

dx 
= (mc – nb)   

 d 
 f (x) – (lc – na)  

 d 
 g(x) 

+ (lb – ma)  
 d 

 h(x) 

= (mc – nb) f (x) – (lc – na) g (x) + (lb – ma) h(x) ...(i) 

f (x) g(x) h(x) 

R.H.S. = l m n 

a b c 

Expanding along first row, 
= f (x) (mc – nb) – g(x) (lc – na) + h(x) (lb – ma) 

= (mc – nb) f (x) – (lc – na) g(x) + (lb – ma) h(x) ...(ii) 
From (i) and (ii), we have L.H.S. = R.H.S. 

23. If y = ea cos
–1 x , – 1  x  1, show that 

(1 – x2) 
d2 y 

dx2 
x

 dy 

dx 
– a2y = 0. 

Sol.  Given: y = ea cos–1 x 
...(i) 

 
dy = ea cos–1 x  d  (a cos–1 x) 


∵ 

 d  
ef (x)  ef (x) 

 d   
f (x)




dx dx 
 dx dx 



dy 
or 

dx
 = ea cos–1 x    . a  aea cos1 x 

= 
1  x2 

Cross-multiplying, 
dy 

a
 

dx 
ea cos–1 x 

= – ay 
 

(By (i))  ...(ii) 

Again differentiating both sides w.r.t. x, 

 d      dy 

dx   dx 

dy d 

dx dx 
(1 – x2)1/2 = – a 

dy
 

 
d2 y  

+  
dy 

 

1 
(1 – x2)–1/2    

 d  (1 – x2) = – a   
dy

 

dx2 dx  2 dx dx 



 2 
 

 

 

– 

+ 
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2 

 
d2 y 

+ 
1 

 

dy 1 
(– 2x) = – a  

dy
 

dx2 2   dx dx 

Multiplying by L.C.M. = , 

 
(1 – x2) d2 y 

– x   dy 
 

= – a 
dy

 

dx2 dx dx 
= – a (– ay) [By (ii)] 
= a y 

 (1 – x2) 
d2 y dy 

– x 
 

– a2y = 0. 

dx2 dx 
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