Exercise 4.1

1. $\left|\begin{array}{rr}2 & 4 \\ -5 & -1\end{array}\right|$

Sol. Determinant $\quad 2 \quad 4=2(-1)-4(-5)$

$$
\left|-5^{\text {Lín }_{1}}\right|_{=-2+20=18}
$$

2. (i) $\left|\begin{array}{rr}\boldsymbol{\operatorname { c o s }} \theta & -\boldsymbol{\operatorname { s i n }} \theta \\ \boldsymbol{\operatorname { s i n }} \theta & \boldsymbol{\operatorname { c o s }} \theta\end{array}\right| \quad$ (ii) $\left\lvert\, \begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right.$

Sol.

$$
\begin{aligned}
& \text { (i) Determinant }\left|\right|=\underset{-(-\sin \theta)}{\cos \theta(\cos \theta)} \\
& -(-\sin \theta)(\sin \theta) \\
& =\cos ^{2} \theta+\sin ^{2} \theta=1 \text {. } \\
& \text { (ii) } \begin{aligned}
\left|\begin{array}{rl}
x^{2}-x+1 \\
x+1 \\
x+1 \\
x+1
\end{array}\right| & =\left(x^{2}-x+1\right)(x+1) \\
& \quad-(x+1)(x-1) \\
& =\left(x^{3}+1\right)-\left(x^{2}-1\right)=x^{3}-x^{2}+2 .
\end{aligned}
\end{aligned}
$$

3. If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, then show that $|2 A|=4|A|$.

Sol. Given: Matrix $\quad \mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$

$$
\begin{align*}
& \therefore \quad 2 A=2\left[\begin{array}{ll}
1 & 2 \\
4 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 \times 1 & 2 \times 2 \\
2 \times 4 & 2 \times 2
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
8 & 4
\end{array}\right] \\
& \therefore \quad \text { L.H.S. }=|2 A|=\left|\begin{array}{ll}
2 \\
8 & 4
\end{array}\right|=2(4)-4(8)=8-32=-24 \tag{i}
\end{align*}
$$

$$
\text { R.H.S. }=4|\mathrm{~A}|=4\left|\begin{array}{l}
1 \tag{ii}\\
4
\end{array} \frac{2}{2}\right|=4(2-8)=4(-6)=-24
$$

From (i) and (ii), we have L.H.S. = R.H.S.
4. If $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$, then show that $|3 A|=27|A|$.

Sol. $3 A=3\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]=\left[\begin{array}{ccc}3 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 12\end{array}\right]$
\therefore L.H.S. $=|3 \mathrm{~A}|=\left|\begin{array}{rrr}3 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 12\end{array}\right|$
Expanding along first column $=3[36-\mathrm{o}]=3 \times 36=108$.
Also R.H.S. $=27|\mathrm{~A}|=27\left|\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right|$
Expanding along first column
$(\because$ There are two zeros in it)

$$
\begin{aligned}
& =27[1(4-0)]=27 \times 4 \\
& =108=\text { L.H.S. } \quad \therefore \quad|3 \mathrm{~A}|=27|\mathrm{~A}| .
\end{aligned}
$$

5. Evaluate the determinants:

(i) $\left\|\begin{array}{rrr}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right\|$	(ii) $\left\|\begin{array}{rrr}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right\|$
(iii) $\left\|\begin{array}{crr}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right\|$	(iv) $\left\|\begin{array}{rrr}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right\|$

Sol. (i) Given determinant is $\left|\begin{array}{rrr}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$ and is of order 3. Expanding along first row
$=3\left|\begin{array}{rr}0 & -1 \\ -5 & 0\end{array}\right|-(-1)\left|\begin{array}{rr}0 & -1 \\ 3 & 0\end{array}\right|+(-2)\left|\begin{array}{rr}0 & 0 \\ 3 & -5\end{array}\right|$
$=3(0-5)+1(0-(-3))-2(0-0)$
$=-15+3-0=-12$.
(ii) Given determinant is $\left|\begin{array}{rrr}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right|$ and is of order 3 .

Expanding along first row

$=3(1+6)+4(1-(-4))+5(3-2)$
$=3(7)+4(5)+5(1)=21+20+5=46$.
(iii) Given determinant is $\left|\begin{array}{rrr}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$ and is of order 3 .

Expanding along first row

$$
\begin{aligned}
& \left.=0\left|\begin{array}{cc}
0 & -3 \\
3 & 0
\end{array}\right|-1 \begin{array}{cc}
-1 & -3
\end{array}\left|\begin{array}{cc}
-2 & 0
\end{array}\right| \begin{array}{cc}
-1 & 0 \\
-2 & 3
\end{array} \right\rvert\, \\
& =0(0+9)-(0-6)+2(-3-0)=0+6-6=0 .
\end{aligned}
$$

(iv) Given determinant is $\left|\begin{array}{rrr}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$ and is of order 3 . Expanding along first row
\(=2\left|\begin{array}{cc}2 \& -1

-5 \& 0\end{array}\right|\)| $-(-1)$ |
| :---: | :---: |\(\left|\begin{array}{cc}0 \& -1

3 \& 0\end{array}\right|+(-2)\left|$$
\begin{array}{ll}0 & 2 \\
3 & -5\end{array}
$$\right|\) $=2(0-5)+(0+3)-2(0-6)=-10+3+12=5$.
6. If $A=\left[\left.\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3\end{array} \right\rvert\,\right.$ rimduet $\quad\left[\begin{array}{lll}5 & 4 & -9\end{array}\right]$
$\left\lceil\begin{array}{lll}1 & 1 & -2\end{array}\right\rceil$

Sol. Matrix A $=\left|\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ \lfloor 5 & 4 & -9\end{array}\right| \quad \therefore \quad$ Det A i.e., $|\mathrm{A}|=\left|\begin{array}{ccc}2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right|$

Expanding along first row

$$
\begin{aligned}
& =1\left|\begin{array}{ll}
1 & -3 \\
4 & -9
\end{array}\right|-1\left|\begin{array}{cc}
2 & -3 \\
5 & -9
\end{array}\right|+(-2)\left|\begin{array}{cc}
2 & 1 \\
5 & 4
\end{array}\right| \\
& =(-9-(-12))-(-18-(-15))-2(8-5) \\
& =-9+12-(-18+15)-2(3)=3-(-3)-6 \\
& =3+3-6=0
\end{aligned}
$$

Note. Such a matrix A for which $|\mathrm{A}|=\mathrm{o}$ is called a singular matrix.
7. Find values of x, if
(i) $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
(ii) $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}\right|$

Sol.
(i) Given: $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
$\Rightarrow 2-20=2 x^{2}-24 \Rightarrow-18=2 x^{2}-24$
$\Rightarrow \quad-2 x^{2}=-24+18=-6$
Dividing by $-2, x^{2}=3$
Taking square roots, $x= \pm \sqrt{3}$.
(ii) Given: $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}\right|$
$\Rightarrow \quad 10-12=5 x-6 x \Rightarrow-2=-x$
Dividing by $-1,2=x$ i.e., $x=2$.
8. If $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$, then x is equal to
(A) 6
(B) ± 6
(C) - 6
(D) 0 .

Sol. Given: $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$

$$
\Rightarrow x^{2}-36=36-36 \Rightarrow x^{2}-36=0 \Rightarrow x^{2}=36
$$

Taking square roots, $x= \pm 6 . \therefore$ Option (B) is the correct answer.

Exercise 4.2

Using the properties of determinants and without expanding in Exercises 1 to 5, prove that:

1. $\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0$.

Sol. On $\left|\begin{array}{ccc}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|$, operate $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}$
2. $\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|=0$.

Sol. On $\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|$, operate $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$

$$
=\left|\begin{array}{lll}
a-b+b-c+c-a & b-c & c-a \\
b-c+c-a+a-b & c-a & a-b \\
c-a+a-b+b-c & a-b & b-c
\end{array}\right|=\left|\begin{array}{lll}
0 & b-c & c-a \\
0 & c-a & a-b \\
0 & a-b & b-c
\end{array}\right|=0
$$

(\because All entries of one column here first are zero)
Note: The reader can do the above problem by operating

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \text { also. }
$$

3. $\left|\begin{array}{lll}2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86\end{array}\right|=0$.

Sol. On $\left|\begin{array}{lll}2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86\end{array}\right|$, operate $C_{3} \rightarrow C_{3}-C_{1}=\left\lvert\, \begin{array}{ccc}2 & 7 & 63 \\ 3 & 8 & 72 \\ 5 & 9 & 81\end{array}\right.$
Taking 9 common from third column $=9\left|\begin{array}{lll}2 & 7 & 7 \\ 3 & 8 & 8 \\ 5 & 9 & 9\end{array}\right|=9(0)=0$.
[Because two columns (one and three) are identical]
4. $\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|=0$

Sol. The given determinant is $\left|\begin{array}{ccc}\mathbf{1} & b c & a(b+c) \\ \mathbf{1} & c a & b(c+a) \\ \mathbf{1} & a b & c(a+b)\end{array}\right|=\left|\begin{array}{lll}\mathbf{1} & b c & a b+a c \\ \mathbf{1} & c a & b c+b a \\ \mathbf{1} & a b & a c+b c\end{array}\right|$
Operate $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{2}=\left|\begin{array}{ccc}\mathbf{1} & b c & a b+b c+a c \\ \mathrm{CUE}^{a} \Gamma & a b+b c+a c\end{array}\right|$

$$
|\mathbf{1} \quad a b \quad a b+b c+a c|
$$

Taking $(a b+b c+a c)$ common from C_{3},
$=(a b+b c+a c)\left|\begin{array}{lll}\mathbf{1} & b c & \mathbf{1} \\ \mathbf{1} & c a & \mathbf{1} \\ \mathbf{1} & a b & \mathbf{1}\end{array}\right|$
$=(a b+b c+a c) 0=0 . \quad\left(\because \mathrm{C}_{1}\right.$ and C_{3} are identical $)$
5. $\left|\begin{array}{ccc}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y\end{array}\right|=2\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$.

Sol. L.H.S. $=\left|\begin{array}{ccc}b+c & q+r & y+z \\ c+a & r+p & z+x a\end{array}\right|$

$$
+b p+q x+y
$$

Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
b+c+c+a+a+b & q+r+r+p+p+q & y+z+z+x+x+y \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right| \\
& =\left\lvert\, \begin{array}{ccc}
2(a+b+c) & 2(p+q+r) & 2(x+y+z) \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right.
\end{aligned}
$$

Taking 2 common from R_{1}

$$
=2\left|\begin{array}{ccc}
a+b+c & p+q+r & x+y+z \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right|
$$

Operate $R_{1} \rightarrow R_{1}-R_{2}$ (to get single letter entries as required in the determinant on R.H.S.)

$$
=2\left|\begin{array}{ccc}
b & q & y \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right|
$$

Now operate $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$ (to get single letter entries as required in the determinant on R.H.S.)

$$
=2\left|\begin{array}{ccc}
b & q & y \\
c+a & r+p & z+x \\
a & p & x
\end{array}\right|
$$

Now operate $R_{2} \rightarrow R_{2}-R_{3}$ (objective being same as in the above two operations)

$$
=2\left|\begin{array}{lll}
b & q & y \\
c & r & z \\
a & p & x
\end{array}\right|
$$

Interchanging R_{2} and $\mathrm{R}_{3},=-2\left|\begin{array}{ccc}b & q & y \\ a & p & x \\ c & r & z\end{array}\right|$

$$
=-(-2)\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|=2\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|=\text { R.H.S. }
$$

By using properties of determinants, in Exercise 6 to 14, show that:
6. $\quad\left|\begin{array}{rrr}0 & \boldsymbol{a} & -\boldsymbol{b} \\ -\boldsymbol{a} & 0 & -\boldsymbol{c} \\ \boldsymbol{b} & \boldsymbol{c} & 0\end{array}\right|=\mathbf{0}$.

Sol. Let $\Delta=\left|\begin{array}{rrr}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$
Taking (-1) common from each row, we have

$$
\Delta=(-1)^{3}\left|\begin{array}{ccc}
0 & -a & b \\
a & 0 & c \\
-b & -c & 0
\end{array}\right|
$$

Interchanging rows and columns in the determinant on R.H.S.,

$$
\Delta=-\left|\begin{array}{rrr}
0 & a & -b \\
-a & 0 & -c \\
b & c & 0
\end{array}\right| \quad\left(\because(-1)^{3}=-1\right)
$$

$$
\begin{equation*}
\Rightarrow \Delta=-\Delta \tag{i}
\end{equation*}
$$

Shifting $-\Delta$ from R.H.S. to L.H.S., $\Delta+\Delta=0$ or $2 \Delta=0$

$$
\therefore \Delta=\frac{\mathrm{o}}{2}=0
$$

Note. 1. We can also do this question by taking (-1) common from each column.
2. When you are asked to prove that a determinant is equal to zero or two determinants are equal, then it is to be proved soonly without expanding.
3. It may be remarked that the determinant of Q. No. 6 above is determinant of a skew symmetric matrix of order 3 .
7. $\quad\left|\begin{array}{ccc}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$.

Sol. L.H.S. $=\left|\begin{array}{ccc}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right|$
Taking a, b, c common from $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ respectively,

$$
=a b c\left|\begin{array}{rrr}
-a & b & c \\
a & -b & c \\
a & b & -c
\end{array}\right|
$$

Operate $R_{1} \rightarrow R_{1}+R_{2}$ (to create two zeros in a line (here first row))

$$
=a b c\left|\begin{array}{rrr}
0 & 0 & 2 c \\
a & -b & c \\
a & b & -c
\end{array}\right|
$$

Expanding along first row (\because There are two zeros in it)

$$
\begin{aligned}
& =a b c \cdot 2 c\left|\begin{array}{rr}
a & -b \\
a & b
\end{array}\right|=a b c \cdot 2 c(a b+a b) \\
& =a b c \cdot 2 c \cdot 2 a b=4 a^{2} b^{2} c^{2}=\text { R.H.S. }
\end{aligned}
$$

Note. Whenever we are asked to find the value of a determinant by using "Properties of Determinants", we must create two zeros in a line (Row or Column).
8. (i)
$\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$
(ii) $\left|\begin{array}{lll}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$.

Sol.
(i) L.H.S. $=\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & \boldsymbol{b} & b^{2} \\ 1 & \boldsymbol{c} & c^{2}\end{array}\right|$

Operating $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$

$$
=\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right|=\left|\begin{array}{ccc}
1 & a & a^{2} \\
0 & b-a & b^{2}-a^{2} \\
0 & c-a & c^{2}-a^{2}
\end{array}\right|
$$

Expanding along first column

$$
=1\left|\begin{array}{ll}
b-a & b^{2}-a^{2} \\
c-a & c^{2}-a^{2}
\end{array}\right|=\left|\begin{array}{ll}
(b-a) & (b-a)(b+a) \\
(c-a) & (c-a)(c+a)
\end{array}\right|
$$

Taking out $(b-a)$ common from first row and $(c-a)$ common from second row

$$
\begin{aligned}
& =(b-a)(c-a)\left|\begin{array}{ll}
1 & b+a \\
\mathbf{1} & c+a
\end{array}\right| \\
& =(b-a)(c-a)(c+a-b-a)=(b-a)(c-a)(c-b) \\
& =-(a-b)(c-a)(-(b-c))=(a-b)(b-c)(c-a)
\end{aligned}
$$

Remark. For expanding a determinant of order 3 we should make all entries except one entry of a row or column as zeros (i.e., we should make two entries as zeros) and then expandthe determinant along this row or column. For doing so, the ideal situation is that all entries of a row or column are 1 each.
If each entry of a column is 1 , then, to create two zeros, subtract first row from each of the remaining two rows.
If each entry of a row is 1 , then to create two zeros, subtract first column from each of the remaining two columns.
(ii) L.H.S. $=\left|\begin{array}{ccc}\mathbf{1} & \mathbf{1} & \mathbf{1} \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|$

Here all entries of a row are 1 each.
So operate $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}, \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$ (to creat two zeros in a line (here first row))

$$
=\left|\begin{array}{ccc}
1 & 0 & 0 \\
a & b-a & c-a \\
a^{3} & b^{3}-a^{3} & c^{3}-a^{3}
\end{array}\right|
$$

Expanding along first row, $=1$

$$
\left.\begin{array}{cc}
b-a & c-a \\
b^{3}-a^{3} & c^{3}-a^{3}
\end{array} \right\rvert\,
$$

(Forming factors)

$$
=\left|\begin{array}{cc}
(b-a) & (c-a) \\
(b-a)\left(b^{2}+a^{2}+a b\right) & (c-a)\left(c^{2}+a^{2}+a c\right)
\end{array}\right|
$$

Taking $(b-a)$ common from C_{1} and $(c-a)$ common from C_{2},

$$
\left.\begin{aligned}
& =(b-a)(c-a) \left\lvert\, \begin{array}{c}
\mathbf{1} \\
b^{2}+a^{2}+a b
\end{array}\right. \\
& =(b-a)(c-a)\left(c^{2}+a^{2}+a c-b^{2}+a c\right.
\end{aligned} \right\rvert\,
$$

9. $y \quad y^{2} \quad z x=(x-y)(y-z)(z-x)(x y+y z+z x)$.
$z \quad z^{2} \quad x y$

Sol. L.H.S. $=\left|\begin{array}{ccc}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|$
Multiplying $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ by x, y, z respectively (to make each entry of third column same here (xyz))

$$
=\frac{\mathbf{1}}{x y z}\left|\begin{array}{lll}
x^{2} & x^{3} & x y z \\
y^{2} & y^{3} & x y z \\
z^{2} & z^{3} & x y z
\end{array}\right|
$$

Taking $x y z$ common from $\mathrm{C},=\underline{x y z}\left|\begin{array}{lll}x^{2} & x^{3} & 1 \\ y^{2} & y^{3} & 1 \\ 3 & x y z & z^{2}\end{array} z^{3} \begin{array}{llll}1 & z^{2} & z^{3} & 1\end{array}\right|=\left|\begin{array}{lll}x^{2} & x^{3} & 1 \\ y^{2} & y^{3} & 1\end{array}\right|$

Now all entries of a column are same. So operate $R_{2} \rightarrow R_{2}-R_{1}$, $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$ to create two zeros in a column.

$$
=\left|\begin{array}{ccc}
x^{2} & x^{3} & 1 \\
y^{2}-x^{2} & y^{3}-x^{3} & 0 \\
z^{2}-x^{2} & z^{3}-x^{3} & 0
\end{array}\right|
$$

Expanding along third column =1 $\left|\begin{array}{cc}y^{2}-x^{2} & y^{3}-x^{3} \\ z^{2}-x^{2} & z^{3}-x^{3}\end{array}\right|$
(Forming factors) $=\left|\begin{array}{cc}(y-x)(y+x) & (y-x)\left(y^{2}+x^{2}+x y\right) \\ (z-x)(z+x) & (z-x)\left(z^{2}+x^{2}+z x\right)\end{array}\right|$
Taking $(y-x)$ common from R_{1} and $(z-x)$ common from R_{2}
$=(y-x)(z-x)\left|\begin{array}{ll}y+x & y^{2}+x^{2}+x y \\ z+x & z^{2}+x^{2}+z x\end{array}\right|$
$=(y-x)(z-x)\left[(y+x)\left(z^{2}+x^{2}+z x\right)-(z+x)\left(y^{2}+x^{2}+x y\right)\right]$
$=(y-x)(z-x)\left[y z^{2}+y x^{2}+x y z+x z^{2}+x^{3}+x^{2} z\right.$

$$
\left.-z y^{2}-z x^{2}-x y z-x y^{2}-x^{3}-x^{2} y\right]
$$

$=(y-x)(z-x)\left[y z^{2}-z y^{2}+\mathbf{C Z}^{2} \overline{E T}^{x y^{2}}\right]$
$=(y-x)(z-x)\left[y z(z-y)+x\left(z^{2}-y^{2}\right)\right]$
$=(y-x)(z-x)[y z(z-y)+x(z-y)(z+y)]$
$=(y-x)(z-x)(z-y)[y z+x(z+y)]$
$=-(x-y)(z-x)[-(y-z)](y z+x z+x y)$
$=(x-y)(y-z)(z-x)(x y+y z+z x)=$ R.H.S.
10. (i) $\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x\end{array}\right|=(5 x+4)(4-x)^{2}$.
(ii) $\left|\begin{array}{ccc}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|=k^{2}(3 y+k)$.

Sol. (i) L.H.S. $=\left|\begin{array}{ccc}2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|$
Here sum of entries of each column is same ($=5 x+4$), so let us operate $\mathbf{R}_{\mathbf{1}} \rightarrow \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}$ to make all entries of first row equal $(=5 x+4)$.

$$
=\left|\begin{array}{ccc}
5 x+4 & 5 x+4 & 5 x+4 \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|
$$

Taking $(5 x+4)$ common from R_{1},

$$
=(5 x+4)\left|\begin{array}{ccc}
\mathbf{1} & \mathbf{1} & \mathbf{1} \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|
$$

Now each entry of one (here first) row is 1 , so let us operate $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$ to create two zeros in a zero.

$$
=(5 x+4)\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 x & 4-x & 0 \\
2 x & 0 & 4-x
\end{array}\right|
$$

Expanding along first row

$$
=(5 x+4)(4-x)^{2}=\text { R.H.S. }
$$

Remark. We could also start here by operating

$$
\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} .
$$

(ii) L.H.S. $=\left|\begin{array}{ccc}y+k & y & y \\ y & y+k & y \\ y & \text { DSCUET }+k\end{array}\right|$

$$
\begin{aligned}
& =(5 x+4) \cdot 1 \left\lvert\, \begin{array}{ll}
& \\
4-x & 0
\end{array}\right. \\
& \text { O } \quad 4-x
\end{aligned}
$$

Here sum of entries of each row is same ($=3 y+k$), so let us operate $\mathbf{C}_{\mathbf{1}} \rightarrow \mathbf{C}_{\mathbf{1}}+\mathbf{C}_{\mathbf{2}}+\mathbf{C}_{\mathbf{3}}$ to make all entries of first column equal $(=3 y+k)$

$$
=\left|\begin{array}{ccc}
3 y+k & y & y \\
3 y+k & y+k & y \\
3 y+k & y & y+k
\end{array}\right|
$$

Taking $(3 y+k)$ common from C_{1},

$$
=(3 y+k)\left|\begin{array}{ccc}
\mathbf{1} & y & y \\
\mathbf{1} & y+k & y \\
\mathbf{1} & y & y+k
\end{array}\right|
$$

Now each entry of one (here first) column is 1, so let us operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$ to create two zeros in a column,

$$
=(3 y+k)\left|\begin{array}{lll}
1 & y & y \\
0 & k & 0 \\
0 & 0 & k
\end{array}\right|
$$

Expanding along first column, $=(3 y+k) \cdot 1\left|\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right|$

$$
=(3 y+k) k^{2}=k^{2}(3 y+k)=\text { R.H.S. }
$$

Remark. We could also start here by operating

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}
$$

11. (i)

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|=(a+b+c)^{3} . \\
& \left|\begin{array}{ccc}
x+y+2 z & x & y \\
z & y+z+2 x & y \\
z & x & z+x+2 y
\end{array}\right|=2(x+y+z)^{3} .
\end{aligned}
$$

(ii)

Sol.
(i) L.H.S. $=\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|$

Here sum of entries of each column is same (= $a+b+c$), so let us operate $\mathbf{R}_{1} \rightarrow \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}$ to make all entries of first row equal $(=a+b+c)$

$$
=\left|\begin{array}{ccc}
a+b+c & a+b+c & a+b+c \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|
$$

Taking $(a+b+c)$ common from \mathbf{R}_{1},

$$
2 c \quad 2 c \quad c-a-b
$$

Now each entry of one (here first) row is 1 , so let us
operate $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$ to create two zeros in a row,

$$
=(a+b+c)\left|\begin{array}{ccc}
\mathbf{1} & 0 & 0 \\
2 b & -b-c-a & 0 \\
2 c & 0 & -c-a-b
\end{array}\right|
$$

Expanding along first row

$$
\left.\begin{aligned}
& =(a+b+c) \cdot 1 \cdot\left|\begin{array}{cc}
-b-c-a & 0 \\
0 & - \\
\hline
\end{array}\right| \\
& =(a+b-a-b
\end{aligned} \right\rvert\,
$$

Remark. Here we can't operate $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$ because sum of entries of each row is not same.
(ii)
L.H.S. $=\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|$

Here sum of entries of each row is same $(=2 x+2 y+2 z=2(x$ $+y+z$), so let us operate $\mathbf{C}_{1} \rightarrow \mathbf{C}_{1}+\mathbf{C}_{2}+\mathbf{C}_{3}$ to make all entries of first column equal $(=2(x+y+z))$

$$
=\left|\begin{array}{ccc}
2(x+y+z) & x & y \\
2(x+y+z) & y+z+2 x & y \\
2(x+y+z) & x & z+x+2 y
\end{array}\right|
$$

Taking $2(x+y+z)$ common from C_{1},

$$
=2(x+y+z)\left|\begin{array}{ccc}
1 & x & y \\
1 & y+z+2 x & y \\
1 & x & z+x+2 y
\end{array}\right|
$$

Now each entry of one (here first) column is 1 , so let us operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$ to create two zeros in a column

$$
=2(x+y+z)\left|\begin{array}{ccc}
1 & x & y \\
0 & x+y+z & 0 \\
0 & 0 & x+y+z
\end{array}\right|
$$

Expanding along first column

$$
\begin{aligned}
& =2(x+y+z) \cdot 1 \cdot\left|\begin{array}{cc}
x+y+z & 0 \\
0 & x+y+z
\end{array}\right| \\
& =2(x+y+z) \text { CUET }{ }^{\text {Xdadem}} \mathrm{y} \text {] }
\end{aligned}
$$

$$
=2(x+y+z)^{3}=\text { R.H.S. }
$$

12. $\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$.

Sol. L.H.S. $=\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|$
Here sum of entries of each column is same ($=1+x+x^{2}$), so let us operate $\mathbf{R}_{\mathbf{1}} \rightarrow \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}$ to make all entries of first row equal (= $\left.1+x+x^{2}\right)$

$$
=\left|\begin{array}{ccc}
1+x+x^{2} & 1+x+x^{2} & 1+x+x^{2} \\
x^{2} & 1 & x \\
x & & \\
x & x^{2} & 1
\end{array}\right|
$$

Taking ($1+x+x^{2}$) common from \mathbf{R}_{1},

$$
=\left(1+x+x^{2}\right)\left|\begin{array}{ccc}
\mathbf{1} & \mathbf{1} & \mathbf{1} \\
x^{2} & \mathbf{1} & x \\
x & x^{2} & \mathbf{1}
\end{array}\right|
$$

Now each entry of one (here first) row is 1 , so let us operate $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$ to create two zeros in a row.

$$
=\left(1+x+x^{2}\right)\left|\begin{array}{ccc}
1 & 0 & 0 \\
x^{2} & 1-x^{2} & x-x^{2} \\
x & x^{2}-x & 1-x
\end{array}\right|
$$

Expanding along first row

$$
\begin{aligned}
& =\left(1+x+x^{2}\right) \cdot 1\left|\begin{array}{cc}
1-x^{2} & x-x^{2} \\
x^{2}-x & 1-x
\end{array}\right| \\
& =\left(1+x+x^{2}\right)\left|\begin{array}{lr}
(1-x)(1+x) & x(1-x)
\end{array}\right| \\
& -x(1-x)
\end{aligned}
$$

$=\left(1+x+x^{2}\right)\left[(1-x)^{2}(1+x)+x^{2}(1-x)^{2}\right]$
$=\left(1+x+x^{2}\right)(1-x)^{2}\left(1+x+x^{2}\right)=\left(1+x+x^{2}\right)^{2}(1-x)^{2}$
$=\left[\left(1+x+x^{2}\right)(1-x)\right]^{2} \quad\left(\because \mathrm{~A}^{2} \mathrm{~B}^{2}=(\mathrm{AB})^{2}\right)$
$=\left(1-x+x-x^{2}+x^{2}-x^{3}\right)^{2}=\left(1-x^{3}\right)^{2}=$ R.H.S.
Remark. For the above question, we could also operate C_{1}
$\rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$ because sum of entries of each row is also same and $\left(=1+x+x^{2}\right)$.
13.

$1+a^{2}-b^{2}$	$2 b$
$2 a b$	DSCUETT $a^{2}+$
Acadeny	

$$
\begin{aligned}
2 & =\left(1+a^{2}\right. \\
b & \left.+b^{2}\right)^{3} . \\
2 & \\
a & \\
1- & \\
a^{2}- & \\
b^{2} &
\end{aligned}
$$

Sol. Operating $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-b \mathrm{C}_{3}, \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+a \mathrm{C}_{3}$ in L.H.S. as suggested by the factor $\left(1+a^{2}+b^{2}\right)$ in R.H.S.

L.H.S. $=|$| $1+a^{2}+b^{2}$ | 0 | $-2 b$ |
| :---: | :---: | :---: |
| 0 | $1+a^{2}+b^{2}$ | $2 a$ |
| | | |
| $b\left(1+a^{2}+b^{2}\right)$ | $-a\left(1+a^{2}+b^{2}\right)$ | $1-a^{2}-b^{2}$ |

$\left[\because 2 b-b\left(1-a^{2}-b^{2}\right)=2 b-b+a^{2} b+b^{3}\right.$
$\left.=b+a^{2} b+b^{3}=b\left(1+a^{2}+b^{2}\right)\right]$
Taking out ($1+a^{2}+b^{2}$) common from C_{1} and C_{2}

$$
=\left(1+a^{2}+b^{2}\right)^{2}\left|\begin{array}{rrc}
1 & 0 & -2 b \\
0 & 1 & 2 a \\
b & -a & 1-a^{2}-b^{2}
\end{array}\right|
$$

Operating $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-b \mathrm{R}_{1}$ (to create another zero in first column)

$$
=\left(1+a^{2}+b^{2}\right)^{2}\left|\begin{array}{rrc}
1 & 0 & -2 b \\
0 & 1 & 2 a \\
0 & -a & 1-a^{2}+b^{2}
\end{array}\right|
$$

Expanding along C_{1}

$$
\begin{aligned}
& =\left(1+a^{2}+b^{2}\right)^{2} \cdot 1\left|\begin{array}{cc}
1 & 2 a \\
-a & 1-a^{2}+b^{2}
\end{array}\right| \\
& =\left(1+a^{2}+b^{2}\right)^{2}\left(1-a^{2}+b^{2}+2 a^{2}\right)=\left(1+a^{2}+b^{2}\right)^{3} .
\end{aligned}
$$

14.

$$
\begin{array}{|l}
\left|\begin{array}{ccc}
a^{2}+1 & a b & a c \\
a b & b^{2}+1 & b c \\
c a & c b & c^{2}+1
\end{array}\right|=1+a^{2}+b^{2}+c^{2} . \text {. }
\end{array}
$$

Sol. Multiplying $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ by a, b, c respectively and in return dividing the determinant by $a b c$,

$$
\Delta=\frac{1}{a b c}\left|\begin{array}{ccc}
a\left(a^{2}+1\right) & a b^{2} & a c^{2} \\
a^{2} b & b\left(b^{2}+1\right) & b c^{2} \\
a^{2} c & b^{2} c & c\left(c^{2}+1\right)
\end{array}\right|
$$

Taking out a, b, c common from $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ respectively,

$$
=\left|\begin{array}{ccc}
1+a^{2}+b^{2}+c^{2} & b^{2} & c^{2} \\
1+a^{2}+b^{2}+c^{2} & b^{2}+1 & c^{2} \\
1+a^{2}+b^{2}+c^{2} & b^{2} & c^{2}+1
\end{array}\right|
$$

Taking out $\left(1+a^{2}+b^{2}+c^{2}\right)$ common from C_{1},

$$
=\left(1+a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}
\mathbf{1} & b^{2} & c^{2} \\
1 & b^{2}+1 & c^{2} \\
\mathbf{1} & b^{2} & c^{2}+\mathbf{1}
\end{array}\right|
$$

Operating $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$,

$$
=\left(1+a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}
1 & b^{2} & c^{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|
$$

Expanding along first column,

$$
=\left(1+a^{2}+b^{2}+c^{2}\right) \times 1(1-0)=1+a^{2}+b^{2}+c^{2} .
$$

Choose the correct answer in Exercises 15 and 16:
15. Let A be a square matrix of order 3×3, then $|k A|$ is equal to
(A) $k\left|\left|\left|\left|\left|\begin{array}{l}\text { A }\end{array}\right|\right|\right|\right|\right.$
(B) $k^{2}| || |\left|{ }_{A}\right|| || |$
(C) $\boldsymbol{k}^{3}|A|$
(D) $3 \boldsymbol{k}|\mathbf{A}|$.

Sol. Let $\left.\mathrm{A}=\begin{array}{lll}\left\lceil a_{11}\right. & a_{12} & a_{13} \\ a_{21} & a_{22}\end{array}\right]$ be a square matrix of order 3×3.

$$
\left\lfloor\begin{array}{lll}
& & \tag{i}\\
a_{31} & a_{32} & a_{33}
\end{array}\right.
$$

\therefore By definition of scalar multiplication of a matrix,

$$
\begin{aligned}
k \mathrm{~A}= & {\left[\begin{array}{lll}
k a_{11} & k a_{12} & k a_{13} \\
k a_{21} & k a_{22} & k a_{23} \\
& & \\
k a_{31} & k a_{32} & k a_{33}
\end{array}\right\rfloor \quad \therefore|k \mathrm{~A}|=\left|\begin{array}{lll}
k a_{11} & k a_{12} & k a_{13} \\
k a_{21} & k a_{22} & k a_{23} \\
& & \\
k a_{31} & k a_{32} & k a_{33}
\end{array}\right| }
\end{aligned}
$$

Taking k common from each row,

$$
\begin{aligned}
& =k^{3} \left\lvert\, \begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
& =k^{3}|\mathrm{~A}|
\end{array} .\right.
\end{aligned}
$$

Remark. In general, if A is a square matrix of order $n \times n$; then we can prove that $|\boldsymbol{k A}|=\boldsymbol{k}^{\boldsymbol{n}}|\mathbf{A}|$.
\therefore Option (C) is the correct answer.
16. Which of the following is correct:
(A) Determinant is a squarematrix.
(B) Determinant is a number associated to a matrix.
(C) Determinant is a number associated to a square matrix.
(D) None of these.

Sol. Option (C) is the correct answer.
i.e., Determinant is a number associated to a square matrix.

Exercise 4.3

1. Find the area of the triangle with vertices at the points given in each of the following:
(i) $(1,0),(6,0),(4,3)$
(ii) $(2,7),(1,1),(10,8)$
(iii) $(-2,-3),(3,2),(-1,-8)$.

Sol. (i) Area of the triangle having vertices at (1, 0), (6, o), (4, 3)

$$
=\text { Modulus of } \frac{1}{2}\left|\begin{array}{lll}
x^{1} & y_{1} & \mathbf{1} \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=\frac{1}{2}\left|\begin{array}{lll}
\mathbf{1} & 0 & 1 \\
6 & 0 & 1 \\
4 & 3 & 1
\end{array}\right|
$$

Expanding along first row,

$$
=\frac{1}{2}[1(0-3)-0(6-4)+1(18-0)]
$$

i.e., \quad Area of triangle $=$ modulus of $\frac{1}{2}(-3+18)$

$$
=\left|\frac{15}{2}\right|=\frac{15}{2} \text { sq. units }
$$

(. Modulus of a positive number is number itself)
(ii) Area of the triangle having vertices at $(2,7),(1,1),(10,8)$.

$$
=\text { Modulus of } \frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & \mathbf{1} \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=\frac{\mathbf{1}}{2}\left|\begin{array}{rrr}
2 & 7 & 1 \\
1 & 1 & 1 \\
10 & 8 & 1
\end{array}\right|
$$

Expanding along first row

$$
\begin{aligned}
& =\frac{1}{2}[2(1-8)-7(1-10)+1(8-10)] \\
& =\frac{1}{2}[2(-7)-7(-9)-2]=\frac{1}{2}(-14+63-2) \\
& \quad{ }_{2} \\
& =\frac{1}{2}(63-16) \\
& \quad{ }_{2}
\end{aligned}
$$

$$
\text { i.e., Area of triangle }=\left|\begin{array}{c}
47 \\
2
\end{array}\right|=\begin{gathered}
47 \\
2
\end{gathered} \text { sq. units. }
$$

(. Modulus of a positive real number is number itself)
(iii) Area of the triangle having vertices at

$$
\begin{aligned}
& (-2,-3),(3,2),(-1,-8) \text { is }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}[-2(2+8)-(-3)(3+1)+1(-24+2)] \\
& =\frac{1}{2}[-2(10)+3(4)-22]=\frac{1}{2}(-20+12-22) \\
& \\
& 2
\end{aligned}
$$

$={ }^{\underline{1}}(-42+12)={ }^{\underline{1}}(-30)=-15$

$$
\begin{array}{ll}
2 & 2
\end{array}
$$

\therefore Area of triangle $=$ Modulus of -15 i.e., $=|-15|$

$$
=15 \text { sq. units }
$$

(\because Modulus of a negative real number is negative of itself)
2. Show that the points $\mathrm{A}(a, b+c), \mathrm{B}(b, c+a), \mathrm{C}(c, a+b)$ are collinear.
Sol. The given points are $\mathrm{A}(a, b+c), \mathrm{B}(b, c+a), \mathrm{C}(c, a+b)$.
\therefore Area of triangle ABC is modulus of $\begin{aligned} & 1 \\ & 2\end{aligned}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
$=\frac{\mathbf{1}}{\mathbf{2}}\left|\begin{array}{lll}a & b+c & \mathbf{1} \\ b & c+a & \mathbf{1} \\ c & a+b & \mathbf{1}\end{array}\right|$
Expanding along first row,

B A
$=\frac{1}{2}[a(c+a-a-b)-(b+c)(b-c)+1(b(a+b)-c(c+a))]$
$=\frac{1}{2}\left[a(c-b)-\left(b^{2}-c^{2}\right)+\left(a b+b^{2}-c^{2}-a c\right)\right]$
$=^{\underline{1}}\left(a c-a b-b^{2}+c^{2}+a b+b^{2}-c^{2}-a c\right)={ }^{\underline{1}}(\mathrm{o})=0$

$$
\begin{array}{ll}
2 & 2
\end{array}
$$

i.e., Area of $\triangle \mathrm{ABC}=0$
\therefore Points A, B, C are collinear (See above figure).
3. Find values of \boldsymbol{k} if area of triangle is 4 sq. units and vertices are:
(i) $(k, 0),(4,0),(0,2)$
(ii) $(-2,0),(0,4),(0, k)$.

Sol. (i) Given: Area of the triangle whose vertices are ($k, 0$), (4, $0)$, $(0,2)$ is 4 sq. units.

$$
\begin{aligned}
& \Rightarrow \text { Modulus of } \frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=4 \\
& \Rightarrow \text { Modulus of } \frac{1}{2}\left|\begin{array}{lll}
k & 0 & 1 \\
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right|=4
\end{aligned}
$$

Expanding along first row, $\left|\begin{array}{l}\frac{1}{1}\{k(0-2)-0+1(8-0)\} \\ 2\end{array}\right|=4$

$$
\left.\Rightarrow\left|\begin{array}{l}
\underline{1} \\
2
\end{array}(-2 k+8)=4 \Rightarrow\right|-k+4 \right\rvert\,=4
$$

$\Rightarrow-k+4= \pm 4$
$[\because$ If $x \in \mathrm{R}$ and $|x|=a$ where $a \geq 0$, then $x= \pm a]$
Taking positive sign, $-k+4=4$
$\Rightarrow-k=0 \quad \Rightarrow k=0$

Taking negative sign, $-k+4=-4$
$\Rightarrow-k=-8 \quad \Rightarrow k=8 \quad$ Hence $\quad k=0, k=8$.
(ii) Given: Area of the triangle whose vertices are ($-2,0$), (0,4), ($0, k$) is 4 sq. units.
\Rightarrow Modulus of $\begin{aligned} & \underline{\mathbf{1}} \\ & 2\end{aligned}\left|\begin{array}{lll}x_{1} & y_{1} & \mathbf{1} \\ x_{2} & y_{2} & \mathbf{1} \\ x_{3} & y_{3} & \mathbf{1}\end{array}\right|=4$
\Rightarrow Modulus of $\frac{\mathbf{1}}{2}\left|\begin{array}{rrr}-2 & 0 & \mathbf{1} \\ 0 & 4 & \mathbf{1} \\ 0 & k & 1\end{array}\right|=4$
Expanding along first row, $\left|\begin{array}{l}\frac{1}{-}\{-2(4-k)-0+1(0-0)\} \\ 2\end{array}\right|=4$
$\Rightarrow\left|{ }_{2}^{1}(-8+2 k)\right|_{2}=4 \Rightarrow|-4+k|=4$
$\Rightarrow \quad-4+k= \pm 4$
$(\because$ If $|x|=a$ where $a \geq 0$, then $x= \pm a)$
Taking positive sign, $-4+k=4 \Rightarrow k=4+4=8$
Taking negative sign, $-4+k=-4 \Rightarrow k=0$
Hence, $\quad k=0, k=8$.
4. (i) Find the equation of the line joining $(1,2)$ and $(3,6)$ using determinants.
(ii) Find the equation of the line joining $(3,1)$ and $(9,3)$ using determinants.
Sol. (i) Let $\mathrm{P}(x, y)$ be any point on the line joining the points $(1,2)$ and $(3,6)$.
\therefore Three points are collinear.

\therefore Area of triangle that could be formed by them is zero.
$\Rightarrow \frac{1}{2}\left|\begin{array}{lll}x & y & 1 \\ 1 & 2 & 1 \\ 3 & 6 & 1\end{array}\right|=0$

$$
\left[\begin{array}{l}
\underline{\mathbf{1}} \\
\mathbf{2}
\end{array}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\right\rfloor
$$

Multiplying both sides by 2, and expanding the determinant on left hand side along first row,

$$
x(2-6)-y(1-3)+1(6-6)=0
$$

$\Rightarrow-4 x+2 y=0$. Dividing by $-2,2 x-y=0$
or $-y=-2 x$ i.e., $y=2 x$ which is the required equation of the line.
(ii) Let $\mathrm{P}(x, y)$ be anybgifdet
and $(9,3)$.
\therefore Three points are collinear.

\therefore Area of triangle that could be formed by them is zero.

$$
\Rightarrow \quad \underline{1}\left|\begin{array}{lll}
x & y & 1 \\
3 & 1 & 1 \\
9 & 3 & 1
\end{array}\right|=0
$$

Multiplying both sides by 2 and expanding the determinant on left hand side along first row,

$$
\begin{aligned}
& x(1-3)-y(3-9) \\
\Rightarrow \quad & +1(9-9)=0 \\
& -2 x+6 y=0
\end{aligned}
$$

Dividing by $-2, x-3 y=0$ which is the required equation of the line.
5. If area of triangle is 35 sq. units with vertices ($2,-6$), $(5,4)$ and $(k, 4)$. Then k is
(A) 12
(B) -2
(C) - 12, - 2
(D) 12, - 2.

Sol. Given: Area of triangle having vertices $(2,-6),(5,4)$ and $(k, 4)$ is 35 sq. units.
\therefore Modulus of $\left\{\begin{array}{l}\underline{1} \\ \mathbf{1} \\ 2\end{array}\left|\begin{array}{lll}x_{1} & y_{1} & \mathbf{1} \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=\underline{1}\left|\begin{array}{rrr}2 & -6 & 1 \\ 5 & 4 & 1 \\ k & 4 & 1\end{array}\right|\right)=35 \quad$ (Given)
Expanding along first row,

$$
\begin{aligned}
& \left.\left\lvert\, \begin{array}{l}
\frac{1}{2} \\
2
\end{array} 2(4-4)-(-6)(5-k)+1(20-4 k)\right.\right\} \mid=35 \\
& \Rightarrow \quad\left|\begin{array}{l}
\underline{1}\{0+30-6 k+20-4 k\} \\
2
\end{array}\right|=35 \\
& \Rightarrow \left\lvert\,{\underset{2}{1}(50-10 k)|=35 \Rightarrow| 25-5 k \mid=35}^{\frac{1}{2}}\right. \\
& \Rightarrow \quad 25-5 k= \pm 35 \text { If }|x|=a \text { where } a \geq 0 \text {, then } x= \pm a]
\end{aligned}
$$

Taking positive sign, $25-5^{k}=35 \Rightarrow-5 k=10$
$\Rightarrow \quad k=\frac{-10}{5}=-2$
Taking negative sign, $25-5 k=-35$
$\Rightarrow \quad-5 k=-60 \Rightarrow k=12$
Thus, $k=12,-2$
\therefore Option (D) is the correct answer.

Exercise 4.4

Note. Minor $\left(\mathrm{M}_{i j}\right)$ and Cofactor $\left(\mathrm{A}_{i j}\right)$ of an element $a_{i j}$ of a determinant Δ are defined not for the value of the element but for $(\boldsymbol{i}, \boldsymbol{j})$ th position of the element.
Def. 1. Minor $\mathbf{M}_{i j}$ of an element $a_{i j}$ of a determinant Δ is the determinant obtained by omitting its i th row and j th column in which element $a_{i j}$ lies.

Def. 2. Cofactor $\mathrm{A}_{i j}$ of an element $a_{i j}$ of Δ is defined as
$\mathrm{A}_{i j}=(-1)^{i+j} \mathrm{M}_{i j}$ where $\mathrm{M}_{i j}$ is the minor of $a_{i j}$.

1. Write minors and cofactors of the elements of the following determinants:
(i) $\left|\begin{array}{rr}2 & -4 \\ 0 & 3\end{array}\right|$
(ii) $\left|\begin{array}{ll}\boldsymbol{a} & \boldsymbol{c} \\ \boldsymbol{b} & \boldsymbol{d}\end{array}\right|$

Sol.
(ii) Let $\Delta=\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$
$\mathbf{M}_{11}=$ Minor of $a_{11}=|d|=d$,

$$
\mathrm{A}_{11}=(-1)^{1+1} d=(-1)^{2} d=d
$$

$$
\mathrm{M}_{12}=\text { Minor of } a_{12}=|b|=b
$$

$$
\mathrm{A}_{12}=(-1)^{1+2} \mathrm{M}_{12}=(-1)^{3} b=-b
$$

$$
\mathrm{M}_{21}=\text { Minor of } a_{21}=|c|=c
$$

$$
\mathrm{A}_{21}=(-1)^{2+1} c=(-1)^{3} c=-c
$$

$$
\mathrm{M}_{22}=\text { Minor of } a_{22}=|a|=a
$$

$$
A_{22}=(-1)^{2+2} a \quad=(-1)^{4} a=a
$$

2. Write Minors and Cofactors of the elements of the following determinants:
(i) $\left|\begin{array}{lll}\mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & 0 \\ \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right|$
(ii) $\left|\begin{array}{rrr}1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2\end{array}\right|$

Sol. (i) Let $\Delta=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$

$$
\begin{aligned}
& \therefore \quad \mathrm{M}_{11}=\text { Minor of } a_{11}=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1-0=1 \\
& \mathrm{~A}_{11}=(-1)^{1+1} \mathrm{M}_{11}=(-1)^{2} 1=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { (i) Let } \Delta=\left\lvert\, \begin{array}{ll}
2 & -4 \\
&
\end{array}\right. \\
& \text { O } 3 \\
& \mathrm{M}_{11}=\text { Minor of } a_{11}=|3|=3 \text {; } \\
& \mathrm{A}_{11}=(-1)^{1+1} \mathrm{M}_{11}=(-1)^{1+1}(3)=(-1)^{2} 3=3 \\
& \text { (Omit first row and first column of } \Delta \text {) } \\
& \mathrm{M}_{12}=\text { Minor of } a_{12}=|\mathrm{o}|=\mathrm{o} \\
& \mathrm{~A}_{12}=(-1)^{1+2} \mathrm{M}_{12}=(-1)^{1+2}(0)=(-1)^{3} \cdot \mathrm{o}=0 \\
& \mathrm{M}_{21}=\text { Minor of } a_{21}=|-4|=-4 \text {, } \\
& \mathrm{A}_{21}=(-1)^{2+1} \mathrm{M}_{21}=(-1)^{2+1}(-4)=(-1)^{3}(-4)=4 \\
& \mathrm{M}_{22}=\text { Minor of } a_{22}=|2|=2 \text {, } \\
& \mathrm{A}_{22}=(-1)^{2+2} \mathrm{M}_{22}=(-1)^{2+2} 2=(-1)^{4} 2=2
\end{aligned}
$$

$$
\mathrm{M}_{12}=\text { Minor of } a_{12}=\left|\begin{array}{ll}
\mathrm{O} & \mathrm{O} \\
\mathrm{O} & 1
\end{array}\right|=\mathrm{o}-\mathrm{o}=\mathrm{o}
$$

(Omitting first row and second column of Δ)

$$
\begin{aligned}
& \mathrm{A}_{12}=(-1)^{1+2} \mathrm{M}_{12}=(-1)^{3} \mathrm{o}=\mathrm{o} \\
& \mathrm{M}_{13}=\text { Minor of } a_{13}=\left|\begin{array}{ll}
\mathrm{o} & 1 \\
\mathrm{o} & \mathrm{o}
\end{array}\right|=\mathrm{o}-\mathrm{o}=\mathrm{o}, \\
& \mathrm{~A}_{13}=(-1)^{1+3} \mathrm{M}_{13}=(-1)^{4} \mathrm{o}=\mathrm{o} \\
& \mathrm{M}_{21}=\text { Minor of } a_{21}=\left|\begin{array}{ll}
0 & \mathrm{o} \\
\mathrm{o} & 1
\end{array}\right|=\mathrm{o}-\mathrm{o}=\mathrm{o}
\end{aligned}
$$

$$
\mathrm{A}_{21}=(-1)^{2+1} \mathrm{M}_{21}=(-1)^{3} \mathrm{O}=\mathrm{o}
$$

$$
\mathrm{M}_{22}=\text { Minor of } a_{22}=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1-0=1,
$$

$$
\mathrm{A}_{22}=(-1)^{2+2} \mathrm{M}_{22}=(-1)^{4} 1=1
$$

$$
\mathrm{M}_{23}=\text { Minor of } a_{23}=\left|\begin{array}{ll}
1 & \mathrm{o} \\
\mathrm{o} & \mathrm{o}
\end{array}\right|=\mathrm{o}-\mathrm{o}=\mathrm{o}
$$

$$
\mathrm{A}_{23}=(-1)^{2+3} \mathrm{M}_{23}=(-1)^{5} \mathrm{O}=0
$$

$$
\mathrm{M}_{31}=\text { Minor of } a_{31}=\left|\begin{array}{ll}
\mathrm{o} & \mathrm{o} \\
1 & \mathrm{o}
\end{array}\right|=\mathrm{o}-\mathrm{o}=\mathrm{o}
$$

$$
A_{31}=(-1)^{3+1} M_{31}=(-1)^{4} 0=0
$$

$$
\mathrm{M}_{32}=\text { Minor of } a_{32}=\left|\begin{array}{ll}
1 & \mathrm{o} \\
\mathrm{o} & \mathrm{o}
\end{array}\right|=\mathrm{o}-\mathrm{o}=\mathrm{o},
$$

$$
\mathrm{A}_{32}=(-1)^{3+2} \mathrm{M}_{32}=(-1)^{5} \mathrm{O}=0
$$

$$
\mathrm{M}_{33}=\text { Minor of } a_{33}=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1-0=1,
$$

$$
\mathrm{A}_{33}=(-1)^{3+3} \mathrm{M}_{33}=(-1)^{6} 1=1
$$

(ii) Let $\Delta=\left|\begin{array}{rrr}1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2\end{array}\right|$
$\mathrm{M}_{11}=$ Minor of $a_{11}=\left|\begin{array}{rr}5 & -1 \\ 1 & 2\end{array}\right|=10-(-1)=10+1=11$,
$\mathrm{A}_{11}=(-1)^{1+1} \mathrm{M}_{11}=(-1)^{2} 11=11$
$\mathrm{M}_{12}=$ Minor of $a_{12}=\left|\begin{array}{rr}3 & -1 \\ 0 & 2\end{array}\right|=6-\mathrm{o}=6$,
$\mathrm{A}_{12}=(-1)^{1+2} \mathrm{MDSECLET}=\overline{\mathrm{M}} \overline{\mathrm{y}} 6$

$$
\begin{aligned}
& \mathrm{M}_{13}=\text { Minor of } a_{13}=\left|\begin{array}{ll}
3 & 5 \\
\mathrm{o} & 1
\end{array}\right|=3-\mathrm{o}=3 \\
& \mathrm{~A}_{13}=(-1)^{1+3} \mathrm{M}_{13}=(-1)^{4} 3=3
\end{aligned}
$$

$$
\mathrm{A}_{33}=(-1)^{3+3} \mathrm{M}_{33}=(-1)^{6} 5=5
$$

Note. Two Most Important Results

1. Sum of the products of the elements of any row or column of a determinant Δ with their corresponding factors is $=\Delta$. i.e., $\Delta=a_{11} \mathrm{~A}_{11}+a_{12} \mathrm{~A}_{12}+a_{13} \mathrm{~A}_{13}$ etc.
2. Sum of the products of the elements of any row or column of a determinant Δ with the cofactors of any other row or column of Δ is zero.
For example, $\boldsymbol{a}_{11} \mathrm{~A}_{21}+\boldsymbol{a}_{12} \mathrm{~A}_{22}+\boldsymbol{a}_{13} \mathrm{~A}_{23}=0$.
3. Using Cofactors of elements of second row, evaluate

$$
\Delta=\left|\begin{array}{lll}
5 & 3 & 8 \\
2 & 0 & 1 \\
1 & 2 & 3
\end{array}\right| .
$$

Sol. $\Delta=\left|\begin{array}{lll}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{array}\right|$
Elements of second row of Δ are $a_{21}=2, a_{22}=0, a_{23}=1$

$$
\begin{aligned}
& \mathrm{M}_{21}=\text { Minor of } a_{21}=\left|\begin{array}{ll}
0 & 4 \\
1 & 2
\end{array}\right|=0-4=-4, \\
& \mathrm{~A}_{21}=(-1)^{2+1} \mathrm{M}_{21}=(-1)^{3}(-4)=4 \\
& \mathrm{M}_{22}=\text { Minor of } a_{22}=\left|\begin{array}{ll}
1 & 4 \\
0 & 2
\end{array}\right|=2-\mathrm{o}=2 \text {, } \\
& \mathrm{A}_{22}=(-1)^{2+2} \mathrm{M}_{22}=(-1)^{4} 2=2 \\
& \mathrm{M}_{23}=\text { Minor of } a_{23}=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1-0=1 \text {, } \\
& \mathrm{A}_{23}=(-1)^{2+3} \mathrm{M}_{23}=(-1)^{5} 1=-1 \\
& \mathrm{M}_{31}=\text { Minor of } a_{31}=\left|\begin{array}{ll}
0 & 4 \\
5 & -1
\end{array}\right|=0-20=-20 \text {, } \\
& \mathrm{A}_{31}=(-1)^{3+1} \mathrm{M}_{31}=(-1)^{4}(-20)=-20 \\
& \mathrm{M}_{32}=\text { Minor of } a_{32}=\left|\begin{array}{cc}
1 & 4 \\
3 & -1
\end{array}\right|=-1-12=-13 \text {, } \\
& \mathrm{A}_{32}=(-1)^{3+2} \mathrm{M}_{32}=(-1)^{5}(-13)=13 \\
& \mathrm{M}_{33}=\text { Minor of } a_{33}=\left|\begin{array}{ll}
1 & 0 \\
3 & 5
\end{array}\right|=5-0=5 \text {, }
\end{aligned}
$$

$$
\text { Cofactor of } a_{21}=(-1)^{2+1} \quad 3 \quad 8 \quad\left(\because \mathrm{~A}_{i j}=(-1)^{i+j} \mathrm{M}_{i j}\right]
$$

$$
\downarrow \downarrow
$$

(determinant obtained by omitting second row and first column of Δ)

$$
=(-1)^{3}(9-16)=-(-7)=7
$$

$$
\mathrm{A}_{22}=\text { Cofactor of } a_{22}=(-1)^{2+2}\left|\begin{array}{ll}
5 & 8 \\
1 & 3
\end{array}\right|=(-1)^{4}(15-8)=7
$$

$$
\mathrm{A}_{23}=\text { Cofactor } a_{23}=(-1)^{2+3}\left|\begin{array}{cc}
5 & 3 \\
1 & 2
\end{array}\right| \quad=(-1)^{5}(10-3)=-7
$$

Now by Result I of Note after the solution of Q. No. 2,

$$
\begin{aligned}
\Delta & =a_{21} \mathbf{A}_{21}+\boldsymbol{a}_{22} \mathbf{A}_{22}+\boldsymbol{a}_{23} \mathbf{A}_{23} \\
& =2(7)+0(7)+1(-7)=14-7=7
\end{aligned}
$$

Remark. The above method of finding the value of Δ is equivalent to expanding Δ along second row.
4. Using Cofactors of elements of third column, evaluate

$$
\Delta=\left|\begin{array}{lll}
1 & x & y z \\
1 & y & z x \\
1 & z & x y
\end{array}\right|
$$

Sol. $\quad \Delta=\left|\begin{array}{lll}1 & x & y z \\ 1 & y & z x \\ 1 & z & x y\end{array}\right|$

Here elements of third column of Δ are
$a_{13}=y z, a_{23}=z x, a_{33}=x y$
$\mathrm{A}_{13}=$ Cofactor of $a_{13}=(-1)^{1+3}\left|\begin{array}{ll}1 & y \\ 1 & \end{array}\right|$

$$
=(-1)^{4}(z-y)=z-y
$$

(determinant obtained by omitting first row and third column of Δ)

$$
\begin{aligned}
& \mathrm{A}_{23}=\text { Cofactor of } a_{23}=(-1)^{2+3}\left|\begin{array}{ll}
1 & x \\
\mathbf{1} & z
\end{array}\right|=(-1)^{5}(z-x)=-(z-x) \\
& \mathrm{A}_{33}=\text { Cofactor of } a_{33}=(-1)^{3+3}\left|\begin{array}{ll}
\mathbf{1} & x \\
\mathbf{1} & y
\end{array}\right|=(-1)^{6}(y-x)=y-x
\end{aligned}
$$

Now by Result I of Note after the solution of Q. NO. 2,

$$
\begin{aligned}
& \Delta=a_{13} \mathrm{~A}_{13}+a_{23} \mathrm{~A}_{23}+a_{33} \mathrm{~A}_{33} \\
& =y z(z-y)+z x[-(z-x)]+x y(y-x) \\
& =y z^{2}-y^{2} z-z^{2} x+z x^{2}+x y^{2}-x^{2} y \\
& =\left(y z^{2}-y^{2} z\right)+\left(x y^{2}-x z^{2}\right)+\left(z x^{2}-x^{2} y\right) \\
& =y z(z-y)+x\left(y^{2}-z^{2}\right)-x^{2}(y-z) \\
& =-y z(y-z)+x(y+z)(y-z)-x^{2}(y-z) \\
& =(y-z)\left[-y z+x y+x z-x^{2}\right] \\
& =(y-z)[-y(z-x) \text { StCUNTI }
\end{aligned}
$$

$$
=(y-z)(z-x)(-y+x)=(x-y)(y-z)(z-x)
$$

Remark. The above method of finding the value of Δ is equivalent to expanding Δ along third column.
5. If $\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ and $A_{i j}$ is Cofactor of $a_{i j}$, then value of Δ is given by
(A) $a_{11} \mathrm{~A}_{31}+a_{12} \mathrm{~A}_{32}+a_{13} \mathrm{~A}_{33}$
(B) $a_{11} \mathrm{~A}_{11}+a_{12} \mathrm{~A}_{21}+a_{13} \mathrm{~A}_{31}$
(C) $a_{21} \mathrm{~A}_{11}+a_{22} \mathrm{~A}_{12}+a_{23} \mathrm{~A}_{13}$
(D) $a_{11} \mathrm{~A}_{11}+a_{21} \mathrm{~A}_{21}+a_{31} \mathrm{~A}_{31}$.

Sol. Option (D) is correct answer as given in Result I of Note after solution of Q. No. 2 and used in the solution of Q. No. 3 and 4 above.
Remark. The values of expressions given in options (A) and (C) are each equal to zero as given in Result II of Note after solution of Q. No. 2.

Exercise 4.5

Find adjoint of each of the matrices in Exercises 1 and 2.

1. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.

Sol. Here

$$
|\mathrm{A}|=\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|
$$

$$
\therefore \quad \mathrm{A}_{11}=\text { Cofactor of } a_{11}=(-1)^{2} 4=4
$$

$$
\mathrm{A}_{12}=\text { Cofactor of } a_{12}=(-1)^{3} 3=-3
$$

$$
\mathrm{A}_{21}=\text { Cofactor of } a_{21}=(-1)^{3} 2=-2
$$

$$
\mathrm{A}_{22}=\text { Cofactor of } a_{22}=(-1)^{4} 1=1
$$

Remark. For writing the Cofactors of the elements of a determinant of order 2 , assign a positive sign to the Cofactors of diagonal elements and a negative sign to the Cofactors of nondiagonal elements.
2.
$\left\lceil\begin{array}{rrr}1 & -1 & 2 \\ 2 & 3 & 5\end{array}\right]$.
$\left[\begin{array}{lll}-2 & 0 & 1\end{array}\right]$

$$
\therefore \quad A_{11}=+\left|\begin{array}{ll}
3 & 5 \\
0 & 1
\end{array}\right|=3, A_{12}=-\left|\begin{array}{rr}
2 & 5 \\
-2 & 1
\end{array}\right|
$$

$$
=-(2+10)=-12, \quad \text { (See Note 2, below) }
$$

$$
A_{13}=+\left|\begin{array}{rr}
2 & 3 \\
-2 & 0
\end{array}\right|=6, A_{21}=-\left|\begin{array}{rr}
-1 & 2 \\
0 & 1
\end{array}\right|=-(-1)=1
$$

$$
\begin{aligned}
\mathrm{A}_{22} & =+\left|\begin{array}{rr}
1 & 2 \\
-2 & 1
\end{array}\right|=1+4=5, \mathrm{~A}_{23}=-\left|\begin{array}{rr}
\mathbf{1} & -1
\end{array}\right| \\
& =-(-2)=2,
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A}_{31} & =+\left|\begin{array}{rr}
-1 & 2 \\
3 & 5
\end{array}\right|=-5-6=-11 \\
\mathrm{~A}_{32} & =-\left|\begin{array}{rr}
1 & 2 \\
2 & 5
\end{array}\right|=-(5-4)=-1, \mathrm{~A}_{33}=+\left|\begin{array}{rr}
1 & -1 \\
2
\end{array}\right| \\
& =3+2=5
\end{aligned}
$$

$$
\therefore \text { adj. } \mathrm{A}=\left[\begin{array}{lll}
\mathrm{A}_{11} & \mathrm{~A}_{12} & \left.\mathrm{~A}_{13}\right]^{\prime} \\
\mathrm{A}_{21} & \mathrm{~A}_{22} & \mathrm{~A}_{23}
\end{array}{ }^{\prime}=\left[\begin{array}{rrr}
3 & -12 & 6 \\
1 & 5 & 2
\end{array}\right]^{\prime}\right.
$$

$$
\left\lfloor\begin{array}{lll}
A_{31} & A_{32} & A_{33}
\end{array}\right\rfloor \quad\left\lfloor\begin{array}{lll}
& & \\
-\mathbf{1 1} & -\mathbf{1} & 5
\end{array}\right\rfloor
$$

$$
\left\lceil\begin{array}{lll}
3 & 1 & -11 \\
\hline
\end{array}\right.
$$

$$
\left.=\begin{array}{rrr}
\left\lvert\, \begin{array}{rrr}
-12 & 5 & -1 \\
\mid & 6 & 2
\end{array}\right. & 5
\end{array} \right\rvert\,
$$

Note. 1. Adjoint of matrix $\begin{array}{ll}a & b\rceil\end{array}$ is $\left\lceil\begin{array}{ll}d-b\rceil\end{array}\right.$

$$
\left\lfloor\begin{array}{ll}
\boldsymbol{c} & \boldsymbol{d}
\end{array}\right\rfloor \quad\left\lfloor\begin{array}{ll}
-\boldsymbol{c} & \boldsymbol{a}
\end{array}\right\rfloor
$$

i.e., To write adjoint of a 2×2 matrix, interchange the diagonal elements and change the signs of non-diagonal elements.
The above result can be used as a formula.
2. For writing the Cofactors of the elements of a determinant of order 3×3, using the rule $(-1)^{i+j} \mathrm{M}_{i j}$, the signs to be assigned to 9 cofactors are alternately + and - beginning with + .
Verify $A(\operatorname{adj} . A)=(\operatorname{adj} . A) A=$
3. $\left\lceil\begin{array}{ll}2 & 3\end{array}\right]$.
$\left\lfloor\begin{array}{ll}-4 & -6\end{array}\right\rfloor$
Sol. Let $A=\left[\begin{array}{rr}2 & 3 \\ -4 & -6\end{array}\right]$

$$
\begin{array}{r}
\therefore \text { By Note 1, above, adj. } A=\begin{array}{|cc}
-6 & -3\rceil \\
4 & 2 \\
\hline
\end{array}
\end{array}
$$

$\left(\because \begin{array}{ll}\because & a d j .\end{array}\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]\right.$ is $\left.\left[\begin{array}{rr}a & -b\rceil \\ -c & a\end{array}\right]\right)$
$\therefore \quad$ A. (adj. A) $\left.=\left[\begin{array}{rr}2 & 3 \\ -4 & -6\end{array}\right]\left[\begin{array}{r}-6 \\ 4\end{array}\right] \begin{array}{|r}-3 \\ 2\end{array}\right]$

$$
\left.=\left|\begin{array}{cc}
-12+12 & -6+6 \tag{i}\\
24-24 & 12-12
\end{array}\right|=\begin{array}{ll}
0 & 0
\end{array} \right\rvert\,
$$

Again (adj. A)

$$
=\left[\begin{array}{ccc}
\lceil-12+12 & -18+18 \tag{ii}\\
\left|\begin{array}{ccc}
\lfloor & 8-8 & 12-12
\end{array}\right|=
\end{array}\left|\begin{array}{ll}
0 & 0 \\
\lfloor & 3
\end{array}\right|\right.
$$

Now $|A|=23=2(-6)-3(-4)=-12+12=0$

$$
|-4 \quad-6|
$$

Again $|\mathrm{A}| \mathrm{I}=|\mathrm{A}| \mathrm{I}_{2}\left(\mathrm{I}\right.$ is I_{2} because A is of order 2×2)

$$
=0\left[\begin{array}{ll}
1 & 0 \tag{iii}\\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

From (i), (ii) and (iii), $\mathrm{A}(\operatorname{adj} . \mathrm{A})=(\operatorname{adj} . \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}$.
4. $\left[\begin{array}{rrr}l & -l & 2 \\ 3 & 0 & -2 \\ l & 0 & 3\end{array}\right]$.

Sol. Let $A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2\end{array}|\quad \therefore| A|=| \begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right] \quad \therefore \begin{array}{rrr} & \\ 1 & 0 & 3\end{array}$ Let $\mathrm{A}_{i j}$ denote Cofactor of $a_{i j}$
(For rule of signs to be assigned see Note 2 at the end of solution of Q. No. 2).

$$
\mathrm{A} \quad=+\mathrm{A}_{21}=-
$$

$\therefore \quad \mathrm{A}_{11}=+$

$$
\mathrm{A}_{22}=+
$$

$$
\mathrm{A}_{12}=-
$$

$$
\mathrm{A}_{31}=+\left|\begin{array}{cc}
-1 & 2 \\
0 & -2
\end{array}\right|=+(2-0)=2,
$$

$$
A_{32}=-\left|\begin{array}{rr}
1 & 2 \\
3 & -2
\end{array}\right|=-(-2-6)=8
$$

$$
\mathrm{A}_{33}=+\left|\begin{array}{rr}
\mathbf{1} & -\mathbf{1} \\
3 & \mathbf{o}
\end{array}\right|=+(\mathrm{o}+3)=3
$$

$$
\left\lceil\begin{array}{llllllll}
\mathrm{A}_{11} & \mathrm{~A}_{12} & \mathrm{~A}_{13}
\end{array}\right\rceil^{\prime} \quad\left\lceil\begin{array}{lllll}
\mathrm{o} & -11 & \mathrm{o}
\end{array}{ }^{\prime} \quad\left\lceil\begin{array}{llll}
\mathrm{O} & 3 & 2
\end{array}\right]\right.
$$

\therefore adj. $\left.\mathrm{A}={ }^{\mid} \mathrm{A}_{21} \mathrm{~A}_{22} \quad \mathrm{~A}_{23}\left|={ }^{\mid} \begin{array}{lll} & 1-1\end{array}\right|={ }_{-11} \quad 1 \quad 8 \right\rvert\,$

$$
\left[\begin{array}{lll}
\mathrm{A}_{31} & \mathrm{~A}_{32} & \left.\mathrm{~A}_{33} \mid\right\rfloor
\end{array}\left[\begin{array}{lll}
2 & 8 & 3
\end{array}\right] \quad\left\lfloor\begin{array}{lll}
\mathrm{O} & -1 & 3
\end{array}\right\rfloor\right.
$$

$\left.\therefore \mathrm{A}(\mathrm{adj} . \mathrm{A})=\left[\begin{array}{|c|c|}\left.\hline \begin{array}{|rrr}1 & -1 & 2 \\ \hline 3 & 0 & -2 \\ \hline \mathbf{1} & 0 & 3\end{array}\right]\end{array}\right]\left[\begin{array}{r}0 \\ -\mathbf{1 1} \\ 0\end{array}\right] \begin{array}{|r|}\hline 3 \\ 1 \\ -1 \\ \hline\end{array}\right]$

$$
\begin{align*}
& =\left[\begin{array}{ccc}
0+11+0 & 3-1-2 & 2-8+6 \\
0-0-0 & 9+0+2 & 6+0-6 \\
0+0+0 & 3+0-3 & 2+0+9
\end{array}\right] \\
& =\left[\begin{array}{ccc}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right] \tag{i}
\end{align*}
$$

Now (adj. A) A $\left.=\begin{array}{rrr}\lceil & 0 & 3 \\ -11 & 1 & 8\end{array}\right\rceil\left[\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2\end{array}\right\rceil$

$$
\begin{align*}
= & \left|\begin{array}{rrr}
0+9+2 & 0+0+0 & 0-6+6 \\
-11+3+8 & 11+0+0 & -22-2+24
\end{array}\right|=\left|\begin{array}{rrr}
11 & 0 & 0 \\
0 & 11 & 0
\end{array}\right| \tag{ii}\\
& \left\lfloor\begin{array}{rrr}
|\mid \\
0-3+3 & 0-0+0 & 0+2+9
\end{array}\right]\left\lfloor\left.\begin{array}{rrr}
\mid & 0 & \mid \\
0 & 0
\end{array} \right\rvert\,\right. \\
& \text { Now }|\mathrm{A}|=\left|\begin{array}{rrr}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right|
\end{align*}
$$

Expanding along first row

$$
=1(0-0)-(-1)(9+2)+2(0-0)=0+11+0=11
$$

Again $|\mathrm{A}| \mathrm{I}=|\mathrm{A}| \mathrm{I}_{3} \quad\left(\because \mathrm{~A}\right.$ is 3×3, therefore I must be $\left.\mathrm{I}_{3}\right)$

From (i), (ii) and (iii)
A. $(\operatorname{adj} . \mathrm{A})=(\operatorname{adj} . \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}$.

Find the inverse of the matrix (if it exists) given in Exercises 5 to 11.
5. $\left[\begin{array}{rr}2 & -2\rceil \\ 4 & \rfloor\end{array}\right.$.

Sol. Let

$$
A=\left[\begin{array}{rr}
2 & -2 \\
4 & 3
\end{array}\right]
$$

$\therefore \quad|\mathrm{A}|=\left|\begin{array}{rr}2 & -2 \\ 4 & 3\end{array}\right|=6-(-8)=6+8=14 \neq \mathrm{O}$
\therefore Matrix A is non-singular and hence A^{-1} exists.
We know that adj. $\left.\mathrm{A}=\begin{array}{ll}3 & 2\rceil \\ & \lceil a\end{array} \quad b\right\rceil \quad\left\lceil\begin{array}{ll}d & -b\rceil\end{array}\right.$

$$
\left\lfloor\begin{array}{ll}
-4 & 2
\end{array} \left\lvert\,\left(\begin{array}{ll}
\text { Adj. }\left\lfloor\left\lfloor\begin{array}{ll}
c & d
\end{array}\right]^{\text {is }}\left\lfloor\begin{array}{ll}
-c & a
\end{array}\right\rfloor\right)
\end{array}\right.\right.\right.
$$

We know that $\mathrm{A}^{-1}=\frac{1}{}$ adj. $\mathrm{A}=\frac{1}{}\lceil\quad 3 \quad 2\rceil$.

$$
|\mathrm{A}| \quad 14\left\lfloor\begin{array}{ll}
-4 & 2\rfloor
\end{array}\right.
$$

6. $\left[\begin{array}{cc}-1 & 5 \\ -3 & 2\end{array}\right]$.

Sol. Let $A=\left[\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right]$
$\therefore|\mathrm{A}|=\left|\begin{array}{ll}-1 & 5\end{array}\right|=-2-(-15)=-2+15=13 \neq 0$
$\therefore \mathrm{A}^{-1}$ exists.
We know that adj. $\mathrm{A}=\left\lceil\begin{array}{ll}2 & -5\rceil \\ & \lceil \\ a & b\rceil \\ \lceil d & -b\rceil\end{array}\right)$

$\therefore \quad \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}($ adj. A$)=\frac{1}{13}\left\lceil\begin{array}{cc}2 & -5\rceil \\ \mid 3 & -1\end{array}\right.$.
7. $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]$.

Sol. Let

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 4 \\
0 & 0 & 5
\end{array}\right] \quad \therefore \quad|\mathrm{A}|=\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 4 \\
0 & 0 & 5
\end{array}\right|
$$

Expanding along first row

$$
=1(10-0)-2(0-0)+3(0-0)=10 \neq 0
$$

$\therefore \mathrm{A}^{-1}$ exists.

$$
\begin{aligned}
& \mathrm{A}_{11}=+\left|\begin{array}{ll}
2 & 4 \\
0 & 5
\end{array}\right|=+(10-0)=10 \\
& \mathrm{~A}_{12}=-\left|\begin{array}{ll}
0 & 4 \\
0 & 5 \\
0 & 2 \\
0 & 0
\end{array}\right|=-(0-0)=0 \\
& \mathrm{~A}_{13}=+\mid(\mathrm{o}-\mathrm{o})=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}_{21}=-\left|\begin{array}{ll}
2 & 3 \\
0 & 5
\end{array}\right|=-(10-0)=-10 \\
& \mathrm{~A}_{22}=+\left|\begin{array}{ll}
1 & 3 \\
0 & 5 \\
1 & 2 \\
0 & 0 \\
2 & 3 \\
2 & 4
\end{array}\right|=(5-0)=5 \\
& \mathrm{~A}_{23}=-(0-0)=0 \\
& \mathrm{~A}_{31}=+\left|\begin{array}{ll}
1 & 3 \\
0 & 4 \\
1 & 2 \\
0 & 2
\end{array}\right|=-(4-0)=-4 \\
& \mathrm{~A}_{32}=-(2-0)=2
\end{aligned}
$$

$$
\left\lceil\begin{array}{lll}
10 & 0 & 0
\end{array}\right\rceil^{\prime} \quad\lceil 10 \quad-10 \quad 2\rceil
$$

$$
\therefore \quad \text { adj. } A=\left|\begin{array}{lll}
\mid 0 & 5 & 0
\end{array}\right|=\left|\begin{array}{lll}
& 0 & 5
\end{array}\right|
$$

$$
\left.\left.|A| \quad 10\right|_{[0} \quad 0 \quad 2 \mid\right\rfloor
$$

8. $\left[\begin{array}{rrr}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right]$.

Sol. Let

$$
A=\left[\begin{array}{ccr}
1 & 0 & 0 \\
3 & 3 & 0 \\
\lfloor 5 & 2 & -1
\end{array}\right] \quad \therefore \quad|A|=\left|\begin{array}{rrr}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1
\end{array}\right|
$$

Expanding along first row $|\mathrm{A}|=1(-3-0)-0+0=-3 \neq 0$

$$
\begin{aligned}
& \mathrm{A}_{11}=+ \\
& \mathrm{A}_{12}=- \\
& \mathrm{A}_{13}=+ \\
& \mathrm{A}_{21}=-
\end{aligned}
$$

=
3
0
)
$=$
3

$=$
+
+
6
-
1
5
)
$=$
9
9
$=-(0-0)$
$=0$,
$=+(-1-$
o) $=-1$,

$$
\begin{aligned}
& \mathrm{A}_{23}=-\left|\begin{array}{ll}
\mathbf{1} & 0 \\
5 & 2
\end{array}\right|=-(2-\mathrm{o})=-2, \\
& \mathrm{~A}_{31}=+\left|\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right|=(\mathrm{o}-\mathrm{o})=\mathrm{o}, \\
& \mathrm{~A}_{32}=-\left|\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right|=-(\mathrm{o}-\mathrm{o})=\mathrm{o} \\
& \mathrm{~A}_{33}=+\left|\begin{array}{ll}
\mathbf{1} & 0 \\
3 & 3
\end{array}\right|=+(3-\mathrm{o})=3
\end{aligned}
$$

$$
\left.\therefore \quad \text { adj. } \mathrm{A}=\left[\begin{array}{rrr}
-3 & 3 & -9
\end{array}\right\rceil^{\prime} \left\lvert\, \begin{array}{rrr}
{\left[\begin{array}{rrr}
-3 & 0 & 0 \\
0 & -1 & -2 \\
0 & 0 & 3
\end{array}\right]} \\
3 & -1 & 0 \\
-9 & -2 & 3
\end{array}\right.\right]
$$

$$
\therefore \quad \mathrm{A}^{-1}=1 \quad \text { adj. } \mathrm{A}=-1 \quad\left[\begin{array}{rrr}
-3 & 0 & 0 \\
3 & -1 & 0
\end{array}\right] .
$$

$$
|\mathrm{A}|
$$

$$
3
$$

$$
\left\lfloor\begin{array}{lll}
-9 & -2 & 3 \\
\hline
\end{array}\right.
$$

9.

$\left\lceil\begin{array}{rrr}2 & 1 & 3 \\ 4 & -1 & 0\end{array}\right]$

$$
\left.\begin{array}{lll}
-7 & 2 & 1
\end{array}\right]
$$

Sol. Let $|\mathrm{A}|=\left|\begin{array}{rrr}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right|$
Expanding by first row,

$$
=2(-1)-1(4)+3(8-7)=-2-4+3=-3 \neq 0
$$

$\Rightarrow \mathrm{A}$ is non-singular $\quad \therefore \mathrm{A}^{-1}$ exists.

$$
\begin{array}{ll}
\mathrm{A}_{11}=+\left|\begin{array}{rr}
-1 & 0 \\
2 & 1
\end{array}\right|=-1, & \mathrm{~A}_{12}=-\left|\begin{array}{rr}
4 & 0 \\
-7 & 1
\end{array}\right|=-4 \\
\mathrm{~A}=+\left|\begin{array}{rr}
4 & -1
\end{array}\right|=8-7=1, & \mathrm{~A}=-\left|\begin{array}{ll}
1 & 3
\end{array}\right|=5 \\
13 & -7 c c
\end{array}
$$

$$
\begin{aligned}
& \mathrm{A}_{31}=\left|\begin{array}{rr}
1 & 3 \\
-1 & 0
\end{array}\right|=3, \quad \mathrm{~A}_{32}=-\left|\begin{array}{ll}
2 & 3 \\
4 & 0
\end{array}\right|=12, \\
& A_{33}=\left|\begin{array}{ll}
2 & 1
\end{array}\right|=-6 \\
& 4-1
\end{aligned}
$$

$\therefore \quad$ adj. $\mathrm{A}=1$

$$
\left.3 \begin{array}{lll}
3 & 12 & -6
\end{array}\right\rfloor \quad\left\lfloor\begin{array}{llll}
\lfloor & 1 & -11 & -6
\end{array}\right]
$$

$$
\therefore \quad A^{-1}=\left|\frac{1}{A}\right| \text { adj. } \left.A=-\frac{1}{3} \begin{array}{|rrr}
-1 & 5 & 3 \\
-4 & 23 & 12
\end{array} \right\rvert\, .
$$

$$
\left\lfloor\begin{array}{lll}
\lfloor & 1 & -11
\end{array}-6\right\rfloor
$$

10. $\left[\begin{array}{rrr}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]$.

Sol. Let $A=\left\lfloor\begin{array}{rrr}0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right\rfloor$
Expanding along first row,

$$
\begin{aligned}
& =1(8-6)-(-1)(0+9)+2(0-6) \\
& =2+9-12=-1 \neq 0
\end{aligned}
$$

$\therefore \mathrm{A}^{-1}$ exists.

$$
\begin{aligned}
& \mathrm{A}_{11}=+\left|\begin{array}{ll}
2 & -3
\end{array}\right|=(8-6)=2, \\
& A_{12}=-\left|\begin{array}{lr}
-2 & 4 \\
3 & 4
\end{array}\right|=-(0+9)=-9 \\
& \mathrm{~A}_{13}=+\left|\begin{array}{rr}
0 & 2 \\
3 & -2
\end{array}\right|=+(\mathrm{o}-6)=-6, \\
& \mathrm{~A}_{21}=-\left|\begin{array}{ll}
-1 & 2 \\
-2 & 4
\end{array}\right|=-(-4+4)=0 \\
& \mathrm{~A}_{22}=+\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|=(4-6)=-2, \\
& A_{23}=-\left|\begin{array}{ll}
1 & -1 \\
3 & -2
\end{array}\right|=-(-2+3)=-1 \\
& \mathrm{~A}_{31}=+\begin{array}{ll}
-1 & 2 \mid=3-4=-1,
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left.\left.\mathrm{A}_{32}=-\left\lvert\, \begin{array}{rr}
1 & 2 \\
0 & -3 \\
\mathrm{~A}_{33} & =+\left|\begin{array}{rr}
1 & -1 \\
0 & 2
\end{array}\right|=(2-0)=2
\end{array}\right.\right]=0\right)=3 \\
\end{array} \\
& \left\lceil\begin{array}{lll}
2 & -9 & -6
\end{array}\right\rceil^{\prime} \quad\left\lceil\begin{array}{lll}
2 & 0 & -1
\end{array}\right\rceil \\
& \therefore \quad \operatorname{adj} . \mathrm{A}=\left|\begin{array}{lll}
0 & -2 & -1
\end{array}\right|=\left\lvert\, \begin{array}{lll}
-9 & -2 & 3
\end{array}\right. \\
& \begin{array}{lll}
\mid & & \mid \\
-1 & 3 & 2
\end{array} \quad\left[\begin{array}{lll}
\mid & \\
-6 & -1 & 2 \mid\rfloor
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \lceil-2 \quad 0 \quad 1\rceil \\
& =\left|\begin{array}{lll}
9 & 2 & -3
\end{array}\right| \\
& \left\lfloor\begin{array}{llll}
\lfloor & 6 & 1 & -2\rfloor
\end{array}\right. \\
& \text { 11. }\left\lceil\begin{array}{ccc}
\mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \cos \alpha & \sin \alpha
\end{array}\right] \text {. } \\
& {\left[\begin{array}{lll}
0 & \boldsymbol{\operatorname { s i n }} \alpha & -\boldsymbol{\operatorname { c o s }} \alpha
\end{array}\right]}
\end{aligned}
$$

Sol. Let $\mathrm{A}=\left[\begin{array}{ccc}\mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cos \alpha & \sin \alpha\end{array}|\quad \therefore| \mathrm{A}|=| \begin{array}{ccc}\mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right] \quad\left|\begin{array}{ccc} \\ \mathbf{0} & \sin \alpha & -\cos \alpha\end{array}\right|$

Expanding along first row

$$
=1\left(-\cos ^{2} \alpha-\sin ^{2} \alpha\right)-0+0=-\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)
$$

or $|A|=-\mathbf{1} \neq 0$
$\therefore \mathrm{A}^{-1}$ exists.

$$
\begin{aligned}
& \mathrm{A}_{11}=+\left\lvert\, \begin{array}{ll}
\cos \alpha & \sin \alpha \\
&
\end{array}=\left(-\cos ^{2} \alpha-\sin ^{2} \alpha\right)\right. \\
& \sin \alpha-\cos \alpha \\
& =-\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=-1 \\
& A_{12}=-\left|\begin{array}{rr}
0 & \sin \alpha \\
0 & -\cos \alpha
\end{array}\right|=-(0-0)=0, \\
& \mathrm{~A}_{13}=+\left|\begin{array}{ll}
0 & \cos \alpha \\
0 & \sin \alpha
\end{array}\right|=0 \\
& \mathrm{~A}_{21}=-\left|\begin{array}{cc}
0 & 0 \\
\sin \alpha & -\cos \alpha
\end{array}\right|=-(0-0)=0, \\
& \mathrm{~A}_{22}=+\left|\begin{array}{cc}
1 & 0 \\
0 & -\cos \boldsymbol{C} \text { ACETEmy }
\end{array}\right|=(-\cos \alpha-0)=-\cos \alpha
\end{aligned}
$$

$$
\mathrm{A}_{23}=-\left|\begin{array}{cc}
1 & 0 \\
0 & \sin \alpha
\end{array}\right|=-(\sin \alpha-0)=-\sin \alpha
$$

$$
\mathrm{A}_{31}=+\left|\begin{array}{cc}
0 & 0 \\
& \\
& .
\end{array}\right|=0-\mathrm{o}=\mathrm{o}
$$

$$
\cos \alpha \quad \sin \alpha
$$

$$
A_{32}=-\left|\begin{array}{cc}
1 & 0 \\
0 & \sin \alpha
\end{array}\right|=-\sin \alpha,
$$

12. Let $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]$, verify that $(A B)^{-1}=B^{-1} A^{-1}$.

Sol. Given: Matrix $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$.
Therefore $\quad|\mathrm{A}|=\left|\begin{array}{ll}3 & 7\end{array}\right|=15-14=1 \neq 0$

Given: Matrix $B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]$
$\therefore \quad|\mathrm{B}|=\left|\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right|=54-56=-2 \neq 0$

$$
\overline{|\mathbf{B}|} \quad-2\left\lfloor\left.\begin{array}{ll}
-7 & 6\rfloor
\end{array}-2^{\mid}-7 \quad 6 \right\rvert\,\right.
$$

$$
\begin{aligned}
& 25 \\
& { }_{-1} \quad 1 \quad\left\lceil\begin{array}{cc}
5 & -7\rceil \\
& \lceil a
\end{array} \quad b\right\rceil=\left\lceil\begin{array}{ll}
d & -b
\end{array}\right\rangle \\
& \left.\therefore \mathrm{A}=\frac{}{|\mathrm{A}|} \text { adj. } \mathrm{A}=\underset{\mid-2}{ } \quad 3\right\rfloor \left\lvert\, \because \mathrm{adj} .\left\lfloor\begin{array} { l l }
{ c } & { d } \\
{ \hline }
\end{array} \left\lfloor\left\lfloor\begin{array}{ll}
-c & a\rfloor
\end{array}\right\rfloor\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}_{33}=+\left|\begin{array}{cc}
1 & 0 \\
0 & \cos \alpha
\end{array}\right|=\cos \alpha . \\
& \left.\begin{array}{lllllll}
-1 & 0 & 0 & \rceil^{\prime} & \lceil-1 & 0 & 0
\end{array}\right\rceil \\
& \therefore \text { adj. } A=\left|\begin{array}{lll}
0 & -\cos \alpha & -\sin \alpha
\end{array}\right|=\left|\begin{array}{lll}
0 & -\cos \alpha & -\sin \alpha
\end{array}\right| \\
& 0-\sin \alpha \quad \cos \alpha \mid\rfloor \quad\left\lfloor\left.\begin{array}{llll}
\mid & 0 & -\sin \alpha & \cos \alpha
\end{array} \right\rvert\,\right. \\
& \therefore \quad \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \quad \text { adj. } \mathrm{A}=-\frac{\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -\cos \alpha & -\sin \alpha
\end{array}\right]}{\mid} \\
& \lfloor 0-\sin \alpha \quad \cos \alpha \mid\rfloor \\
& (\because|\mathrm{A}|=-1 \text {, obtained above }) \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & \sin \alpha & -\cos \alpha
\end{array}\right] \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore|\mathrm{AB}|=\left|\begin{array}{ll}
67 & 87 \\
47 & 61
\end{array}\right|=67(61)-87(47)=4087-4089 \\
& =-2 \neq 0 \\
& \therefore \text { L.H.S. }=(\mathrm{AB})^{-1}=\frac{1}{|\mathrm{AB}|} \text { adj. }(\mathrm{AB})
\end{aligned}
$$

From (i) and (ii) we have L.H.S. $=$ R.H.S. i.e., $\quad(A B)^{-1}=B^{-1} \mathrm{~A}^{-1}$. 13. If $A=\left\lceil\begin{array}{rr}3 & 1\end{array}\right]$, show that $A^{2}-5 A+7 I=0$. Hence find A^{-1}.

$$
\left\lfloor\begin{array}{ll}
-1 & 2
\end{array}\right\rfloor^{\prime}
$$

Sol. Given: $\mathrm{A}=\left\lceil\begin{array}{cc}3 & 1 \\ \hline\end{array}\right.$

$$
\therefore \mathrm{A}^{2}=\mathrm{A} \cdot \mathrm{~A}=\begin{array}{cc}
-1 & 2 \\
\hline & 1 \\
3 & 1 \\
\left|\begin{array}{rr}
-1 & 2
\end{array}\right|\left[\left.\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array} \right\rvert\,\right. & \lfloor
\end{array}\left|\begin{array}{rr}
9-1 & 3+2 \\
-3-2 & -1+4
\end{array}\right|=\left[\left.\begin{array}{rr}
8 & 5 \\
-5 & 3
\end{array} \right\rvert\,\right.
$$

$$
\text { L.H.S. }=\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}=\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}_{2}
$$

$$
\text { (I is } \mathrm{I}_{2} \text { here because } \mathrm{A} \text { is } 2 \times 2 \text {) }
$$

$$
=\left\lceil\begin{array}{ll}
8 & 5 \\
\hline
\end{array}{ }_{5}^{\lceil } 301\right\rceil+{ }^{\lceil } \begin{array}{ll}
1 & 0 \\
\hline
\end{array}
$$

$$
\left\lfloor\begin{array}{ll}
-5 & 3
\end{array}\right\rfloor \quad\left\lfloor\begin{array}{ll}
-1 & 2 \\
\hline
\end{array}\right.
$$

$$
=\begin{array}{ll}
8 & 5 \\
\hline
\end{array} \begin{array}{ll}
15 & 5 \\
\hline
\end{array}\left\lceil\begin{array}{ll}
\lceil 7 & 0 \\
\hline
\end{array}=\left\lceil\begin{array}{ll}
8-15 & 5-5 \\
\hline
\end{array}+\lceil 70\rceil\right.\right.
$$

$$
\left\lfloor\left.\left.\begin{array}{ll}
-5 & 3
\end{array}\right|_{-5} 1^{10}|\quad| \quad|\quad|-5+5 \quad 3-10 \right\rvert\,\right.
$$

$$
=\left[\begin{array}{ll}
\mathrm{O} & \mathrm{o} \\
\mathrm{O} & \mathrm{o}
\end{array}\right]=\mathrm{O}=\text { R.H.S. }
$$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}_{2}=\mathrm{O} \tag{i}
\end{equation*}
$$

Hence to find $\mathrm{A}^{\mathbf{- 1}}$. Multiplying both sides of eqn. (i) by A^{-1}, $\mathrm{A}^{2} \mathrm{~A}^{-1}-5 \mathrm{AA}^{-1}+7 \mathrm{I}_{2} \mathrm{~A}^{-1}=0 . \mathrm{A}^{-1}$
$\Rightarrow \quad \mathrm{A}-5 \mathrm{I}_{2}+7 \mathrm{~A}^{-1}=0 \quad$ CUET
$\left[\because \mathrm{A}^{2} \mathrm{~A}^{-1}=\mathrm{A}\right.$. A ACALEMA and $\mathrm{AA}^{-1}=\mathrm{I}_{2}$ and $\left.\mathrm{IB}=\mathrm{B}\right]$

$$
\begin{align*}
& =-1\left\lceil\begin{array}{ll}
61 & -87 \\
\hline
\end{array}\right. \tag{i}\\
& -2\left\lfloor\begin{array}{ll}
-47 & 67 \\
\hline
\end{array}\right. \\
& \text { R.H.S. }=\mathrm{B}^{-1} \mathrm{~A}^{-1}=\underline{-1}\left\lceil 9^{9}-8\right\rceil\lceil\quad 5-7\rceil \\
& 2 \begin{array}{ll}
\lfloor-7 & 6 \\
\hline
\end{array}\left\lfloor\begin{array}{ll}
-2 & 3
\end{array}\right] \\
& =-\underline{-1}\lceil 45+16-63-24\rceil=\underline{-1}\left\lceil\begin{array}{cc}
61 & -87 \\
\hline
\end{array}\right. \tag{ii}\\
& 2\left\lfloor\begin{array}{ll}
-35-12 & 49+18 \\
-3
\end{array} \quad 2 \begin{array}{ll}
-47 & 67 \\
-4
\end{array}\right.
\end{align*}
$$

$$
\begin{aligned}
& \Rightarrow 7 \mathrm{~A}^{-1}=-\mathrm{A}+5 \mathrm{I}_{2}
\end{aligned}
$$

Caution. Because we were to find; Hence A^{-1} i.e., A^{-1} from $\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}=\mathrm{O}$,
so don't use

$$
\mathrm{A}^{-1}=\frac{\operatorname{adj} . \mathrm{A}}{|\mathrm{~A}|} \text { to find } \mathrm{A}^{-1} \text { here. }
$$

14. For the matrix $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$, find numbers a and b such that $A^{2}+a \mathbf{A}+b \mathbf{I}=0$.
Sol. Given: Matrix $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$

$$
\therefore \quad A^{2}=A . A=\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
9+2 & 6+2 \\
3+1 & 2+1
\end{array}\right]=\left[\begin{array}{rr}
11 & 8 \\
4 & 3
\end{array}\right]
$$

Putting values of A^{2} and A in $\mathrm{A}^{2}+a \mathrm{~A}+b \mathrm{I}_{2}=\mathrm{O}$,
(Here I is I_{2} because A is 2×2), we have

$$
\begin{aligned}
& {\left[\begin{array}{rr}
11 & 8 \\
4 & 3
\end{array}\right]+a\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right]+b\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=0} \\
& \Rightarrow \quad\left[\begin{array}{rr}
11 & 8 \\
4 & 3
\end{array}\right]+\left\lceil\begin{array}{rr}
3 a & 2 a \\
a & a
\end{array} \left\lvert\,+\left[\begin{array}{ll}
b & 0 \\
0 & b
\end{array}\right\rceil=\left[\begin{array}{ll}
\mathbf{0} & 0 \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\right.\right. \\
& \Rightarrow \quad\left[\begin{array}{cc}
11+3 a+b & 8+2 a+0 \\
4+a+0 & 3+a+b
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Equating corresponding entries, we have

$$
\begin{align*}
11+3 a+b & =0 \tag{i}\\
8+2 a & =0 \quad(\Rightarrow 2 a=-8 \Rightarrow a=-4) \\
4+a & =0 \quad(\Rightarrow \quad a=-4), 3+a+b=0 \tag{ii}
\end{align*}
$$

Value of $a=-4$ is same from both equations.
Therefore, $a=-4$ is correct.
Putting $a=-4$ in (i), $11-12+b=0$ or $b-1=0 \quad$ i.e., $\quad b=1$
Again putting $a=-4$ in (ii), $3-4+b=0$
i.e., $\quad-1+b=0$ or $b=1$

The two values of $b=1$ are same from both equations.
$\therefore \quad \mathrm{A}^{2}+a \mathrm{~A}+b \mathrm{I}=\mathrm{o}$ holds true when $a=-4$ and $b=1$.
15. For the matrix $A=\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]$, show that
$A^{3}-6 A^{2}+5 A+11 I=0$. Hence find A^{-1}.
Sol. $\mathrm{A}^{2}=\mathrm{A} . \mathrm{A}=\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]$

Performing row by column multiplication,

$$
\begin{align*}
= & {\left[\left.\begin{array}{lll}
1+1+2 & 1+2-1 & 1-3+3 \\
1+2-6 & 1+4+3 & 1-6-9
\end{array} \right\rvert\,=\left[\left.\begin{array}{rrr}
4 & 2 & 1 \\
-3 & 8 & -14
\end{array} \right\rvert\,\right.\right.} \tag{i}\\
& {\left[\begin{array}{lll}
\mid & & \\
2-1+6 & 2-2-3 & 2+3+9
\end{array}\right] }
\end{align*}
$$

$$
\begin{aligned}
& \therefore \mathrm{A}^{3}=\mathrm{A}^{2} . \mathrm{A}=\left[\begin{array}{rrr}
4 & 2 & 1 \\
-3 & 8 & -14
\end{array}\right\rceil\left\lceil\begin{array}{rrr}
1 & 1 & 1 \\
1 & 2 & -3
\end{array}\right\rceil \\
& \left\lfloor\begin{array}{lll}
7 & -3 & 14
\end{array}\right\rfloor\left\lfloor\begin{array}{lll}
& -1 & 3
\end{array}\right\rfloor \\
& =\left[\left.\begin{array}{rrr}
4+2+2 & 4+4-1 & 4-6+3 \\
-3+8-28 & -3+16+14 & -3-24-42 \\
\lfloor & \\
7-3+28 & 7-6-14 & 7+9+42\rfloor
\end{array} \right\rvert\,\right. \\
& =\left[\begin{array}{rrr}
8 & 7 & 17 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]
\end{aligned}
$$

Now, putting values of A^{3}, A^{2}, A and I_{3} in $A^{3}-6 A^{2}+5 A+11 I_{3}$
(Here I is I_{3} because matrix A is of order 3×3)

$\therefore \quad \mathrm{A}^{3}-6 \mathrm{~A}^{2}+5 \mathrm{~A}+11 \mathrm{I}_{3}=\mathrm{O}_{3 \times 3}$

Hence find A^{-1}.

(See caution at the end of solution of Q. No. 13)
Now multiplying both sides by A^{-1}.
$\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{A}^{2}-6\left(\mathrm{~A}^{-1} \mathrm{~A}\right) \mathrm{A}-5$ CLAET $11 \mathrm{~A}^{-1} \mathrm{I}_{3}=\mathrm{A}^{-1} . \mathrm{O}_{3 \times 3}$
Academy

$$
\begin{array}{lc}
\Rightarrow & \mathrm{A}^{2}-6 \mathrm{IA}+5 \mathrm{I}+11 \mathrm{~A}^{-1}=0 \\
\Rightarrow & \mathrm{~A}^{2}-6 \mathrm{~A}+5 \mathrm{I}+11 \mathrm{~A}^{-1}=0 \\
\Rightarrow & \quad 11 \mathrm{~A}^{-1}=6 \mathrm{~A}-5 \mathrm{I}-\mathrm{A}^{2}
\end{array}
$$

$$
\begin{aligned}
& \text { or } \quad 11 \mathrm{~A}^{-1}=6^{\left\lceil\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & -3
\end{array} \left\lvert\,-5\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right\rceil\right.\right.\right.} \\
& \begin{array}{lll}
\left.\left\lvert\, \begin{array}{lll}
2 & -1 & 3
\end{array}\right.\right] & \left.\begin{array}{lll}
0 & 0 & 1
\end{array}\right\rfloor
\end{array} \\
& -\left[\begin{array}{rrr}
\left.\left[\begin{array}{rrr}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right] \text { (From (i)) }{ }^{[}\right]
\end{array}\right. \\
& \text {or } \quad 11 \mathrm{~A}^{-1}=\left[\left.\begin{array}{ccr}
{[6-5-4} & 6-2 & 6-1 \\
6+3 & 12-5-8 & -18+14 \\
12-7 & -6+3 & 18-5-14
\end{array} \right\rvert\,\right.
\end{aligned}
$$

16. If $A=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1\end{array}\right.$, verify that $A^{3}-6 A^{2}+9 A-4 I=0$ and

$$
\left.\begin{array}{lll}
1 & -1 & 2
\end{array}\right]
$$

hence find A^{-1}.

$$
\left\lceil\begin{array}{lll}
2 & -1 & 1
\end{array}\right\rceil
$$

Sol. Given: $A=\begin{array}{lll}\mid & 2 & -1\end{array}$

$$
\begin{aligned}
& \left\lfloor\left.\begin{array}{llll}
\mid & 1 & -1 & 2
\end{array} \right\rvert\,\right\rfloor \\
& \therefore \quad \mathrm{A}^{2}=\mathrm{A} . \mathrm{A}=\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & -1
\end{array} \left\lvert\,\left\lceil\left.\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & -1
\end{array} \right\rvert\,\right.\right.\right. \\
& \left|\begin{array}{llll}
\mid l & 1 & -1 & 2|j| l \\
\mid l l l l
\end{array}\right| \\
& \Rightarrow \quad A^{2}=\left[\begin{array}{rrr}
4+1+1 & -2-2-1 & 2+1+2 \\
-2-2-1 & 1+4+1 & -1-2-2
\end{array}\right] \\
& 2+1+2-1-2-2 \quad 1+1+4] \\
& =\left[\begin{array}{rrr}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right] \\
& \left\lceil\begin{array}{lll}
6 & -5 & 5 \\
\hline
\end{array} \Gamma \begin{array}{lll}
2 & -1 & 1
\end{array}\right\rceil
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\begin{array}{rrr}
12+5+5 & -6-10-5 & 6+5+10 \\
-10-6-5 & 5+12+5 & -5-6-10
\end{array}\right|=\left|\begin{array}{rrr}
22 & -21 & 21 \\
-21 & 22 & -21
\end{array}\right| \\
& \left.10+5+6 \quad-5-10-6 \quad 5+5+12 \mid\rfloor \quad \begin{array}{llll}
\mid & 21 & -21 & 22
\end{array}\right\rfloor \\
& \text { L.H.S. }=A^{3}-6 A^{2}+9 A-4 I=A^{3}-6 A^{2}+9 A-4 I_{3} \\
& \text { (Here } \mathrm{I} \text { is } \mathrm{I}_{3} \text { because } \mathrm{A} \text { is } 3 \times 3 \text {) }
\end{aligned}
$$

Putting values

Hence to find A^{-1}

(See caution at the end of solution of Q. No. 13)
Multiplying both sides of (i) by A^{-1},
or

$$
\begin{gathered}
\mathrm{A}^{3} \mathrm{~A}^{-1}-6 \mathrm{~A}^{2} \mathrm{~A}^{-1}+9 \mathrm{~A} \mathrm{~A}^{-1}-4 \mathrm{I}_{3} \mathrm{~A}^{-1}=0 \cdot \mathrm{~A}^{-1} \\
\mathrm{~A}^{2}-6 \mathrm{~A}+9 \mathrm{I}_{3}-4 \mathrm{~A}^{-1}=0
\end{gathered}
$$

$$
\left[\because \mathrm{A}^{3} \mathrm{~A}^{-1}=\mathrm{A}^{2} \mathrm{AA}^{-1}=\mathrm{A}^{2} \mathrm{I}=\mathrm{A}^{2} \text { etc. and also } \mathrm{IB}=\mathrm{B}\right]
$$

$\Rightarrow-4 A^{-1}=-A^{2}+6 A-9 I_{3}$

$$
\begin{aligned}
& 4\left\lfloor\left\lfloor\begin{array}{lll}
\| & -5 & 6 \\
5 & -5 & \lfloor \\
6 & -6 & 12
\end{array}\right\rfloor\left\lfloor\left.\begin{array}{lll}
0 & 0 & 9
\end{array} \right\rvert\,\right\rfloor\right. \\
& \left.\left.=\begin{array}{r}
\left.\underline{\mathbf{1}}\left|\begin{array}{rrr}
6-12+9 & -5+6+0 & 5-6+0 \\
4
\end{array}\right| \begin{array}{rrr}
-5+6+0 & 6-12+9 & -5+6+0 \\
5-6+0 & -5+6+0 & 6-12+9
\end{array} \right\rvert\,
\end{array}\right]=\begin{array}{r}
\underline{1} \\
4
\end{array} \left\lvert\, \begin{array}{rrr}
3 & 1 & -1 \\
1 & 3 & 1 \\
-\mathbf{1} & 1 & 3
\end{array}\right.\right]
\end{aligned}
$$

17. Let A be a non-singular matrix of order 3×3. Then $|||\mid$ adj. A ||||| is equal to
(A) $|\mathbf{A}|$
(B) $|\mathbf{A}|^{2}$
(C) $|\mathbf{A}|^{3}$
(D) $3|\mathbf{A}|$.

Sol. If A is a non-singular matrix of order $n \times n$,
then $|\mathbf{a d j} . \mathbf{A}|=|\mathbf{A}| \boldsymbol{n}-\mathbf{1}$.
Putting $n=3$, \mid adj. $\mathrm{A}\left|=|\mathrm{A}|^{2}\right.$
\therefore Option (B) is the correct answer.
18. If A is an invertible matrix of order 2 , then $\operatorname{det}\left(A^{-1}\right)$ is equal to
(A) $\operatorname{det} \mathrm{A}$
(B) $\frac{1}{\operatorname{det} \mathrm{~A}}$
(C) 1
(D) 0 .

Sol. We know that $\mathrm{AA}^{-1}=\mathrm{I}$ for every invertible matrix A .
Taking determinants on both sides, we have
$\left|\mathrm{AA}^{-1}\right|=|\mathrm{I}| \Rightarrow|\mathrm{A}|\left|\mathrm{A}^{-1}\right|=1$
Dividing by $|\mathrm{A}|,\left|\mathrm{A}^{-1}\right|=\frac{\mathbf{1}}{|\mathrm{A}|} \quad$ i.e., $\quad \operatorname{det}\left(\mathrm{A}^{-1}\right)=\frac{1}{\operatorname{det} \mathrm{~A}}$
\therefore Option (B) is the correct answer.

Exercise 4.6

Examine the consistency of the system of equations in Exercises 1 to 3.

1. $x+2 y=2$
$2 x+3 y=3$.
Sol. Given linear equations are

$$
\begin{array}{r}
x+2 y=2 \\
2 x+3 y=3
\end{array}
$$

Their matrix form is $\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 \\ 3\end{array}\right] \quad(\Rightarrow \mathrm{AX}=\mathrm{B})$
Comparing $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$

$$
|A|=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]=3-4=-1 \neq 0
$$

\therefore (Unique) solution and hence equations are consistent.

2. $2 x-y=5$
 $x+y=4$.

Sol. Given linear equations are

$$
\begin{array}{r}
2 x-y=5 \\
x+y=4
\end{array}
$$

Their matrix form is | 2 | $-1\rceil\lceil x\rceil=\lceil 5\rceil \quad(\Rightarrow \mathrm{AX}=\mathrm{B})$ |
| :--- | :--- |

$$
\text { Comparing } \mathrm{A}=\begin{array}{lll}
2 & \left\lfloor\begin{array}{ll}
1 & 1 \\
\hline
\end{array}\right. & -1\rceil \text { and } \mathrm{B}=\lceil 5\rceil
\end{array}
$$

$$
|A|=\begin{aligned}
& \left.\left\lceil 2^{\lfloor 1}-1\right\rceil^{1}\right\rfloor \\
& \left\lfloor\begin{array}{ll}
\lfloor & \lfloor \\
1 & 1
\end{array}\right\rfloor
\end{aligned}
$$

\therefore (Unique) solution and hence equations are consistent.
3. $x+3 y=5$
$2 x+6 y=8$.
Sol. Given linear equations are

$$
\begin{aligned}
& \begin{array}{l}
x+3 y=5 \\
2 x+6 y=8
\end{array} \\
& \text { Their matrix form is }\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
5 \\
8
\end{array}\right] \quad(\Rightarrow \mathrm{AX}=\mathrm{B}) \\
& \text { Comparing } \mathrm{A}=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{l}
5 \\
8
\end{array}| | \mathrm{A} \left\lvert\,=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]=6-6=0\right.\right.
\end{aligned}
$$

So we are to find (adj. A) B
\therefore Given Equations are Inconsistent i.e., have no common solution.
Examine the consistency of the system of equations in Exercises 4 to 6.
4. $x+y+z=1$

$$
\begin{array}{r}
2 x+3 y+2 z=2 \\
a x+a y+2 a z=4
\end{array}
$$

Sol. The given equations

$$
\begin{aligned}
& \text { adj. } A=\begin{array}{rr}
6 & -3 \\
-2 & 1
\end{array}|\quad| \because a d j .\left|\begin{array}{ll}
a & b\rceil \\
c & d
\end{array}\right|=\begin{array}{rr}
d & -b\rceil \\
\left|\begin{array}{cc}
a & a
\end{array}\right|
\end{array} \\
& \therefore(\text { adj. A) } B=\lceil 6-3\rceil\lceil 5\rceil=\lceil 30-24\rceil=\lceil\quad 6\rceil \neq 0 \\
& \left\lfloor\begin{array}{ll}
-2 & 1\rfloor\lfloor 8\rfloor\lfloor-10+8\rfloor\lfloor
\end{array}\right\rfloor \\
& \left.\left(\because \text { The matrix }\left[\begin{array}{r}
6 \\
-2
\end{array}\right] \text { has non-zero entries }\right)^{\prime}\right)
\end{aligned}
$$

$x+y+z$	$=1$	$\ldots(i)$
$2 x+3 y+2 z$	$=2$	$\ldots(i i)$
$a x+a y+2 a z$	$=4$	$\ldots(i i i)$

$$
\begin{aligned}
& \left\lceil\begin{array}{lll}
1 & 1 & 1\rceil\lceil x\rceil \\
2 & 3 & 2 \\
\mid & \lceil 1\rceil \\
|y|=\left|{ }_{2}\right| \\
\left\lvert\, \begin{array}{lll}
a & a & 2 a \\
\mid & \lfloor z\rfloor
\end{array}(\Rightarrow \mathrm{AX}=\mathrm{B})\right.
\end{array}\right. \\
& \lfloor 4\rfloor
\end{aligned}
$$

Their matrix form is $\begin{array}{lll}{\left[\left.\begin{array}{lll}1 & 1 & 1\rceil \\ 2 & 3 & 2 \\ \mid x\rceil & \lceil 1\rceil \\ \mid & & \mid \\ \left.\left\lvert\, \begin{array}{lll}a & a & 2 a\end{array}\right.\right\rfloor & \left|\begin{array}{l}\mid \\ \lfloor z\end{array}\right| & \lfloor 4\end{array} \right\rvert\,\right.}\end{array}(\Rightarrow \mathrm{AX}=\mathrm{B})$
\therefore Matrix

$$
\begin{aligned}
\mathrm{A}= & {\left[\left.\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 2
\end{array} \right\rvert\,\right.} & \therefore|\mathrm{A}|=\left\lvert\, \begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 2 \\
a & a & 2 a \\
\hline
\end{array}\right. & \left\lfloor\left.\begin{array}{lll}
& & 2 a
\end{array} \right\rvert\,\right.
\end{aligned}
$$

Expanding along first row,

$$
\begin{aligned}
|\mathrm{A}| & =1(6 a-2 a)-1(4 a-2 a)+1(2 a-3 a) \\
& =4 a-2 a-a=a
\end{aligned}
$$

Case I. $a \neq 0$

$$
\therefore|\mathrm{A}|=a \neq \mathrm{o}
$$

\therefore (Unique) solution and hence equations are consistent.
Case II. $\boldsymbol{a}=\mathbf{0} \therefore|\mathrm{A}|=a=0$.
Putting $a=0$ in given equation (iii), we have $0=4$ which is impossible.
\therefore Given equations are inconsistent if $a=0$.
5. $3 x-y-2 z=2$

$$
\begin{aligned}
2 y-z & =-1 \\
3 x-5 y & =3
\end{aligned}
$$

Sol. The given equations are
and

$$
\begin{aligned}
& 3 x-y-2 z=2 \\
& 2 y-z=-1 \text { i.e., } \quad 0 x+2 y-z=-1 \\
& \quad 3 x-5 y=3 \text { i.e., } \quad 3 x-5 y+\mathrm{oz}=3
\end{aligned}
$$

$$
\begin{array}{lll}
\lceil 3 & -1 & -2\rceil\lceil x\rceil
\end{array}\lceil 2\rceil
$$

Their matrix form is $\left.\left|\begin{array}{lll}0 & -1\end{array}\right| y^{\mid}=\left.\right|_{-1} \right\rvert\, \quad(\Rightarrow \mathrm{AX}=\mathrm{B})$

$$
\begin{aligned}
& \left\lfloor\begin{array}{lll}
3 & -5 & 0
\end{array}\right\rfloor\lfloor z\rfloor\left\lfloor\begin{array}{l}
3 \\
3
\end{array}\right] \\
& \begin{array}{l}
\begin{array}{lll}
3 & -5 & 0 \\
3
\end{array}\lfloor\lfloor z\rfloor \\
\begin{array}{lll}
3 & -1 & -2\rceil
\end{array}
\end{array} \\
& A=\left|\begin{array}{lll}
0 & 2 & -1
\end{array}\right| \text { and } B=|-1| \\
& \left\lfloor\begin{array}{lll}
3 & -5 & \text { ol }
\end{array}\right]
\end{aligned}
$$

Comparing

$$
|\mathrm{A}|=\left|\begin{array}{rrr}
3 & -1 & -2 \\
0 & -5 & 0
\end{array}\right|
$$

Expanding along first row,

$$
\begin{aligned}
|\mathrm{A}| & =3(0-5)-(-1)(0+3)+(-2)(0-6) \\
& =3(-5)+3+12=-15+15=0
\end{aligned}
$$

So now we are to find (adj. A) B
To find adj. A for $|\mathrm{A}|=\left|\begin{array}{rrr}3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$

$$
\begin{aligned}
& \left.\mathrm{A}_{11}=+\quad 2 \begin{array}{c}
-1
\end{array} \right\rvert\,=(0-5)=-5 \\
& \mathrm{~A}_{12}=-\left|\begin{array}{cc}
-5 & 0 \\
3 & 0
\end{array}\right|=-(0+3)=-3
\end{aligned}
$$

$$
\left[\begin{array}{rrr}
5 & 3 & 6
\end{array}\right] \quad\left[\begin{array}{ccc}
-6 & 12 & 6
\end{array}\right]
$$

$$
\left.\left.\therefore \quad \text { (adj. A) } \mathrm{B}=\begin{array}{rrrr}
-5 & 10 & 5 \\
-3 & 6 & 3
\end{array}\right] \begin{array}{r}
2 \\
-1
\end{array}\right\rceil=\begin{array}{r}
-10-10+15 \\
-6-6+9
\end{array}
$$

$$
\left.\begin{array}{rl}
\left\lfloor\left.\begin{array}{ccc}
& & |\mid \\
-6 & 12 & 6 \\
\lfloor & 3
\end{array} \right\rvert\,\right. & \lceil-12-12+18\rfloor
\end{array}\right]
$$

$$
=\left\lfloor\left\lfloor\left\lfloor\left.\begin{array}{l}
\mid-6\rfloor
\end{array} \right\rvert\, \neq 0\right.\right.\right.
$$

\therefore Given equations are inconsistent.
6. $5 x-y+4 z=52 x$

$$
\begin{aligned}
& +3 y+5 z=25 x- \\
& 2 y+6 z=-1
\end{aligned}
$$

Sol. The given equations are

$$
\begin{array}{r}
5 x-y+4 z=5 \\
2 x+3 y+5 z=2
\end{array} \text { DSACUET }
$$

$$
\begin{aligned}
& \mathrm{A}_{13}=+\left|\begin{array}{lr}
0 & 2 \\
3 & -5
\end{array}\right|=(0-6)=-6, \\
& A_{21}=-\left|\begin{array}{ll}
-1 & -2
\end{array}\right|=-(0-10)=10, \\
& \underset{22}{ }=+\left|\begin{array}{lr}
-5 & -2^{0} \\
3 & 0
\end{array}\right|=(0+6)=6, \\
& \mathrm{~A}_{23}=-\left|\begin{array}{ll}
3 & -1 \\
3 & -5
\end{array}\right|=-(-15+3)=12, \\
& A_{31}=+\left|\begin{array}{rr}
-1 & -2 \\
2 &
\end{array}\right|=(1+4)=5, \\
& -1 \\
& \mathrm{~A}_{32}=-\left|\begin{array}{ll}
3 & -2 \\
0 & -1
\end{array}\right|=-(-3-0)=3, \\
& \mathrm{~A}_{33}=+\left|\begin{array}{rr}
3 & -1 \\
0 & 2
\end{array}\right|=+(6-0)=6 . \\
& \lceil-5 \quad-3 \quad-6\rceil^{\prime} \quad\lceil-5 \quad 10 \quad 5\rceil \\
& \therefore \quad \text { adj. } \mathrm{A}=\left|\begin{array}{lll}
\mid 10 & 6 & 12
\end{array}\right|=\left|\begin{array}{lll}
& 6 & 3
\end{array}\right|
\end{aligned}
$$

$$
5 x-2 y+6 z=-1
$$

Their matrix form is $\left[\begin{array}{rrr}5 & -1 & 4 \\ 2 & 3 & 5\end{array} \left\lvert\,\left\lceil\begin{array}{l}x \\ y\end{array}|=| \begin{array}{l}\lceil \\ \left|\begin{array}{l}5 \\ 2\end{array}\right|\end{array}(\Leftrightarrow \mathrm{AX}=\mathrm{B})\right.\right.\right.$

$$
\left\lfloor\begin{array}{ccc}
\mid & & |\mid \\
5 & -2 & 6\rfloor\lfloor \\
\hline z\rfloor & \lfloor-1\rfloor
\end{array}\right.
$$

Expanding along first row

$$
\begin{aligned}
& =5(18+10)-(-1)(12-25)+4(-4-15) \\
& =5(28)+(-13)+4(-19) \\
& =140-13-76=140-89=51 \neq 0
\end{aligned}
$$

\therefore Given system of equations has a (unique) solution and hence equations are consistent.
Solve the system of linear equations, using matrix method, in Exercises 7 to 10.

$$
\text { 7. } \begin{aligned}
5 x+2 y & =4 \\
7 x+3 y & =5 .
\end{aligned}
$$

Sol. The given equations are
$5 x+2 y=4$
$7 x+3 y=5$
Their matrix form is $\left[\begin{array}{ll}5 & 2 \\ 7 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}4 \\ 5\end{array}\right] \quad(\Rightarrow \mathrm{AX}=\mathrm{B})$
Comparing $\mathrm{A}=\left[\begin{array}{ll}5 & 2 \\ 7 & 3\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$

$$
|\mathrm{A}|=\left|\begin{array}{ll}
5 & 2 \\
7 & 3
\end{array}\right|=15-14=1 \neq 0
$$

\therefore Solution is unique and $\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}$
$\Rightarrow \quad X=\frac{1}{|A|}(\operatorname{adj} . A) . B$

$\Rightarrow \quad\left[\begin{array}{l}x\rceil \\ y\end{array}\right]=\left[\begin{array}{r}12-10 \\ -28+25\end{array}\right]=\left[\begin{array}{r}2 \\ -3\end{array}\right]$
Equating corresponding entries, we have $x=2$ and $y=-3$.
8. $2 x-y=-2$
$3 x+4 y=3$.
Sol. The given equations are

$$
\begin{aligned}
2 x-y & =-2 \\
3 x+4 y & =3
\end{aligned}
$$

Their matrix form is $\lceil 2$

$$
-1\rceil\lceil x\rceil=\lceil-2\rceil(\Rightarrow \mathrm{AX}=\mathrm{B})
$$

Comparing $\mathrm{A}=\left\lceil\begin{array}{ll}2 & -1 \\ \hline\end{array}, \mathrm{X}=\lceil x\rceil\right.$ and $\mathrm{B}=\lceil-2\rceil$

$$
\begin{array}{r}
\left|\begin{array}{cc}
3 & 4 \\
\lfloor & \rfloor \\
|\mathrm{A}| & =\left|\begin{array}{rr}
2 & -1 \\
3 & 4
\end{array}\right|=8-(-3)=8+3=11 \neq 0
\end{array}\right|
\end{array}
$$

\therefore Solution is unique and $\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}$

$$
\begin{array}{r}
\Rightarrow=\frac{1}{11\lfloor-8+3\rceil}=\frac{1}{1}\lceil-5\rceil=\left[\left.\begin{array}{r}
\underline{12} \mid \\
\\
\lfloor 11\lfloor 12\rfloor
\end{array} \right\rvert\,\right.
\end{array}
$$

Equating corresponding entries, we have $x=-\frac{5}{11}$ and $y=\frac{12}{11}$.
9. $4 x-3 y=3$
$3 x-5 y=7$.
Sol. The given equations are
$4 x-3 y=3$
$3 x-5 y=7$
Their matrix form is $\left.\begin{array}{ll}4 & -3 \\ 3 & -5\end{array}\right\rceil\left\lceil\begin{array}{l}x \\ y\end{array}\right\rceil=\left\lceil\begin{array}{l}3 \\ 7\end{array}\right\rceil(\Rightarrow \mathrm{AX}=\mathrm{B})$

Comparing $\mathrm{A}=\left\lceil\begin{array}{rr}4 & -3 \\ 3 & -5\end{array} \left\lvert\,, \mathrm{X}=\left\lceil\begin{array}{l}x \\ y\end{array}\right\rceil\right.\right.$ and $\mathrm{B}=\left\lceil\begin{array}{l}3 \\ 7\end{array}\right\rceil$

$$
|A|=\left|\begin{array}{rr}
4 & -3 \\
3 & -5
\end{array}\right|=-20-(-9)=-20+9=-11 \neq 0
$$

\therefore Solution is unique and $\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{X}=\frac{1}{|\mathrm{~A}|}(\operatorname{adj} . \mathrm{A}) \mathrm{B} \\
\Rightarrow & \left.\left.\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{-11} \right\rvert\, \begin{array}{ll}
-5 & 3 \\
-3 & 4
\end{array}\right]\left[\begin{array}{l}
3 \\
7
\end{array}\right]=\frac{\mathbf{1}}{-11}\left[\begin{array}{r}
-15+21 \\
-9+28
\end{array}\right] \\
\Rightarrow & {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{-11}\left[\begin{array}{r}
6 \\
19
\end{array}\right]=\left[\begin{array}{r}
-6 \\
\left.-\frac{11}{19} \right\rvert\,
\end{array}\right.}
\end{array}
$$

Equating corresponding entries, we have $x=-\frac{6}{11}$ and $y=-\frac{19}{\mathbf{1 1}}$.

$$
\begin{aligned}
& \text { 「_5. }
\end{aligned}
$$

10. $5 x+2 y=3$
$3 x+2 y=5$.
Sol. The given equations are

$$
\begin{aligned}
& 5 x+2 y=3 \\
& 3 x+2 y=5
\end{aligned}
$$

Their matrix form is $\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right] \quad(\Rightarrow \quad \mathrm{AX}=\mathrm{B})$
Comparing $\mathrm{A}=\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$

$$
|\mathrm{A}|=\left|\begin{array}{ll}
5 & 2 \\
3 & 2
\end{array}\right|=10-6=4 \neq 0
$$

\therefore Solution is unique and $\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}$

$$
\Rightarrow \quad X=\frac{1}{|\mathrm{~A}|}(\text { adj. A) B }
$$

Equating corresponding entries, we have $x=-1$ and $y=4$. Solve the system of linear equations, using matrix method, in Exercises 11 to 14.
11. $2 x+y+z=1$

$$
\begin{array}{r}
x-2 y-z=\frac{3}{2} \\
3 y-5 z=9 .
\end{array}
$$

Sol. The given equations are

$$
\begin{aligned}
2 x+y+z & =1 \\
x-2 y-z & =3 \\
2 y-5 z & =9 \text { or o. } x+3 y-5 z=9
\end{aligned}
$$

$$
\left\lceil\begin{array}{lll}
2 & 1 & 1 \\
& & x \\
\hline
\end{array}\left\lceil\begin{array}{l}
1 \\
3
\end{array}\right\rceil\right.
$$

Their matrix form is $\left|\begin{array}{lll}\mathbf{1} & -\mathbf{2} & -1| | y|=|\end{array}\right|$

$$
(\Rightarrow \mathrm{AX}=\mathrm{B})
$$

$$
\left\lfloor\begin{array}{lll}
0 & 3 & -5\rfloor\lfloor[z\rfloor
\end{array} \begin{array}{l}
2 \\
9
\end{array}\right\rfloor
$$

$$
\begin{array}{llll}
\lceil 2 & 1 & 1\rceil & \lceil x\rceil
\end{array} \quad\lceil 1\rceil
$$

$$
\begin{aligned}
& \left\lfloor\begin{array}{lll}
\mathrm{O} & 3 & -5\rfloor
\end{array} \quad\lfloor z\rfloor \quad\left\lfloor\begin{array}{l}
2 \\
9
\end{array}\right\rfloor\right. \\
& |\mathrm{A}|=\left\lvert\, \begin{array}{rrr}
2 & 1 & 1 \\
1 & -2 & \text { DSCUET } \\
& & \text { Aqdemy }
\end{array}\right.
\end{aligned}
$$

O $3-5$
Expanding along first row, $=2(10+3)-1(-5-0)+1(3-0)$
or $|\mathrm{A}|=2(13)+5+3=26+5+3=34 \neq 0$
\therefore Solution is unique and $\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}=\frac{1}{|\mathbf{A}|}$ (adj. A) B ...(i)
Let us find adj. A

$$
A_{11}=+\left|\begin{array}{rr}
-2 & -1 \\
3 & -5
\end{array}\right|=10+3=13
$$

$$
\begin{array}{lll}
1 & 3 & -5\rfloor
\end{array} \quad\left\lfloor\begin{array}{lll}
& -6 & -5 \\
\lfloor
\end{array}\right.
$$

$$
\text { Putting values in eqn. (i), }\left[\begin{array}{l}
x \\
z \\
z
\end{array}\right] \frac{1}{34}\left[\begin{array}{|ccc}
{\left[\begin{array}{|ccc}
13 & 8 & 1 \\
5 & -10 & 3 \\
3 & -6 & -5 \\
\hline
\end{array}\right.} \\
\left\lceil\begin{array}{l}
1 \\
1 \\
3 \\
2 \\
9
\end{array}\right]
\end{array}\right]
$$

$$
=\frac{1}{} \left\lvert\, \begin{gathered}
13+12+9 \\
5-15+27 \\
5
\end{gathered}=\underline{1}\left\lceil\left[\begin{array} { l }
{ 3 4 } \\
{ 1 7 }
\end{array} \left|=\left|\begin{array}{l}
\underline{1} \\
2
\end{array}\right|\right.\right.\right.\right.
$$

$$
34\lfloor|3-9-4|\rfloor \mid
$$

$$
\begin{aligned}
& \mathrm{A}_{12}=-\left|\begin{array}{ll}
\mathbf{1} & -\mathbf{1} \\
0 & -5
\end{array}\right|=-(-5-0)=5, \\
& \mathrm{~A}_{13}=+\left|\begin{array}{rr}
\mathbf{1} & -2 \\
0 & 3
\end{array}\right|=(3-\mathrm{o})=3, \\
& \mathrm{~A}_{21}=-\left|\begin{array}{rr}
\mathbf{1} & \mathbf{1} \\
3 & -5
\end{array}\right|=-(-5-3)=8, \\
& \mathrm{~A}_{22}=+\left|\begin{array}{rr}
2 & 1 \\
0 & -5
\end{array}\right|=(-10-0)=-10, \\
& A_{23}=-\left|\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right|=-(6-0)=-6, \\
& \left.\mathrm{~A}_{31}=+\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array} \right\rvert\,=(-1+2)=1, \\
& \mathrm{~A}_{32}=-\frac{1}{}=-(-2-1)=3, \\
& 1 \quad \mid \quad \square \\
& \mathrm{A}_{33}=+\mathrm{D}^{1}=-4-1=-5 . \\
& 1-2 \\
& \left.\therefore \quad \text { Adj. } \mathrm{A}=\left\lvert\, \begin{array}{rrr}
\lceil 13 & 5 & 3
\end{array}\right.\right\rceil^{\prime}\left|\begin{array}{rrrr}
\lceil 13 & 8 & 1 \\
8 & -10 & -6
\end{array}\right|=\left|\begin{array}{rrr}
\\
5 & -10 & 3
\end{array}\right|
\end{aligned}
$$

$$
y=\frac{1}{2}, z=-\frac{3}{2} .
$$

12. $x-y+z=4$

$$
\begin{array}{r}
2 x+y-3 z=0 \\
x+y+z=2 .
\end{array}
$$

Sol. The given equations are

$$
\begin{array}{r}
x-y+z=4 \\
2 x+y-3 z=0 \\
x+y+z=2
\end{array}
$$

Their matrix form is $\left[\begin{array}{rrr}1 & -1 & 1 \\ 2 & 1 & -3\end{array}\left|\left\lvert\, \begin{array}{l}x \\ y\end{array}\right.\right]=\left\lceil_{0}^{4}|\quad| \quad(A X=B)\right.\right.$ $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right\rfloor\lfloor z\rfloor\lfloor 2\rfloor$

$$
|\mathrm{A}|=\left|\begin{array}{rrr}
\mathbf{1} & -\mathbf{1} & \mathbf{1} \\
\mathbf{2} & \mathbf{1} & -3 \\
\mathbf{1} & \mathbf{1} & \mathbf{1}
\end{array}\right|
$$

Expanding along first row,

$$
\begin{array}{ll}
& =1(1+3)-(-1)(2+3)+1(2-1) \\
\text { or } & |A|=4+5+1=10 \neq 0
\end{array}
$$

\therefore Solution is unique and $\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}=\frac{1}{|\mathbf{A}|}$ (adj. A) B ...(i)

To find adj. A

$$
\begin{aligned}
& \mathrm{A}_{11}=+\left\lvert\, \begin{array}{rr}
\mathbf{1} & -3 \\
\mathbf{1} & \mathbf{1}
\end{array}=(1+3)=4\right., \\
& \mathrm{~A}_{12}=-\left\lvert\, \begin{array}{rr}
2 & -3 \\
\mathbf{1} & \mathbf{1}
\end{array}=-(2+3)=-5\right. \\
& \mathrm{~A}_{13}=+\left|\begin{array}{rr}
2 & \mathbf{1} \\
\mathbf{1} & \mathbf{1}
\end{array}\right|=(2-1)=1, \\
& \mathrm{~A}_{21}=-\left|\begin{array}{rr}
-1 & 1 \\
\mathbf{1} & \mathbf{1}
\end{array}\right|=-(-1-1)=2,
\end{aligned}
$$

$$
\mathrm{A}_{22}=+\left|\begin{array}{ll}
1 & \mathbf{1} \\
\mathbf{1} & \mathbf{1}
\end{array}\right|=(1-1)=0
$$

$$
A_{23}=-\left|\begin{array}{rr}
1 & -1 \\
\mathbf{1} & \mathbf{1}
\end{array}\right|=-(1+1)=-2
$$

$$
\mathrm{A}_{31}=+\left|\begin{array}{ll}
-1 & \mathbf{1}
\end{array}\right|=(3-1)=2
$$

$$
\begin{aligned}
& \mathrm{A}_{33}=+\left|\begin{array}{cc}
2 & -3 \\
2 & -1 \\
2 & 1
\end{array}\right|=1+2=3 .
\end{aligned}
$$

Putting these values in eqn. (i), we have

Equating corresponding entries, we have

$$
x=2, y=-1, z=1
$$

13. $2 x+3 y+3 z=5$

$$
x-2 y+z=-4
$$

$$
3 x-y-2 z=3
$$

Sol. The given equations are

$$
\begin{gathered}
2 x+3 y+3 z=5 \\
x-2 y+z=-4 \\
3 y-y-2 z=3
\end{gathered}
$$

Comparing $\mathrm{A}=$| $\lceil 2$ | 3 | $3\rceil$ |
| ---: | ---: | ---: |
| 1 | -2 | 1 |$\left|, \mathrm{X}=|y|\right.$ and \(\mathrm{B}=\left|\begin{array}{c}\lceil x\rceil

5

\hline\end{array}\right|\)

$$
\left\lfloor\begin{array} { l l l }
{ 3 } & { - 1 } & { - 2 | \rfloor }
\end{array} \left\lfloor\begin{array} { l l }
{ z } \\
{ \hline }
\end{array} \quad \left\lfloor\begin{array}{ll}
\mid & \mid\rfloor
\end{array}\right.\right.\right.
$$

$$
|\mathrm{A}|=\left|\begin{array}{rrr}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2
\end{array}\right|
$$

Expanding along first row, $|\mathrm{A}|=2(4+1)-3(-2-3)+$ $3(-1+6)$

$$
\begin{equation*}
=2(5)-3(-5)+3(5)=10+15+15=40 \neq 0 \tag{i}
\end{equation*}
$$

\therefore Solution is unique and $\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}=\frac{\mathbf{1}}{|\mathbf{A}|}$ (adj. A) B
Let us find adj. A

$$
\begin{aligned}
& \lceil x\rceil \quad\left\lceil\begin{array}{lll}
4 & 2 & 2\rceil \\
\lceil 4\rceil
\end{array}\right. \\
& |y|=\begin{array}{lll}
10 & -5 & 0 \\
y^{\prime} & \left.\right|^{0} \mid
\end{array} \\
& \lfloor z\rfloor \quad\left\lfloor\begin{array}{lll}
1 & -2 & 3 \\
4
\end{array} 2\right\rfloor \\
& \underline{1} \begin{array}{llll}
\lceil 16+0+4\rceil & \underline{1} & \\
& 20\rceil & \lceil x\rceil & \lceil 2\rceil
\end{array} \\
& ={ }_{10}|-20+0+10|=10|-10| \Rightarrow|y|=|-1| \\
& 4-0+6 \mid\rfloor \quad\left\lfloor\begin{array}{ll}
\lfloor 10 \mid
\end{array} \left\lvert\, \quad\lfloor z\rfloor \quad\left\lfloor\begin{array}{l}
\left.\left\lvert\, \begin{array}{ll}
\lfloor \\
1
\end{array}\right.\right\rfloor
\end{array}\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}_{11}=+\begin{array}{cc}
-2 & 1
\end{array}=4+1=5 \\
& \mathrm{~A}_{12}=-\left|\begin{array}{ll}
\mathbf{1} & -2 \\
3 & -2
\end{array}\right|=-(-2-3)=5 \\
& \mathrm{~A}_{13}=+\left|\begin{array}{ll}
1 & -2 \\
3 & -1
\end{array}\right|=-1+6=5 \\
& \mathrm{~A}_{21}=-\left|\begin{array}{rr}
3 & 3 \\
-1 & -2
\end{array}\right|=-(-6+3)=3
\end{aligned}
$$

$$
\begin{aligned}
& A_{22}=+\left|\begin{array}{ll}
2 & 3
\end{array}\right|=-4-9=-13, \\
& \text { 3-2 } \\
& \mathrm{A}_{23}=-\left|\begin{array}{ll}
2 & 3
\end{array}\right|=-(-2-9)=11, \\
& \text { 3-1 } \\
& \mathrm{A}_{31}=+\left|\begin{array}{ll}
3 & 3
\end{array}\right|=3+6=9, \\
& -2 \quad 1 \\
& A_{32}=-\left|\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right|=-(2-3)=1, \\
& \mathrm{~A}_{33}=+\left|\begin{array}{ll}
2 & 3
\end{array}\right|=-4-3=-7 . \\
& 1 \text { - } 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { Putting these values in eqn. (i), } \\
& \left.\Rightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right\rceil \quad \underline{1} \begin{array}{l}
40 \\
80
\end{array}\right\rceil=\left[\begin{array}{l}
1 \\
2
\end{array}\right\rceil \\
& \left\lfloor\left.\begin{array}{c}
\mid \\
\lfloor z\rfloor
\end{array} \quad \begin{array}{c}
\mid \\
40\lfloor-40\rfloor
\end{array} \right\rvert\, \begin{array}{c}
\mid \\
-1\rfloor
\end{array}\right.
\end{aligned}
$$

Equating corresponding entries, we have $x=1, \quad y=2, z=-1$.
14. $x-y+2 z=7$

$$
\begin{aligned}
3 x+4 y-5 z & =-5 \\
2 x-y+3 z & =12 .
\end{aligned}
$$

Sol. The given equations are

$$
x-y+2 z=7 \text { CUET }
$$

$$
\begin{aligned}
& 3 x+4 y-5 z=-5 \\
& 2 x-y+3 z=12
\end{aligned}
$$

$$
|\mathrm{A}|=\left|\begin{array}{rrr}
\mathbf{1} & -1 & \mathbf{2} \\
3 & 4 & -5 \\
\mathbf{2} & -1 & 3
\end{array}\right|
$$

Expanding along first row,

$$
\begin{align*}
|\mathrm{A}| & =1(12-5)-(-1)(9+10)+2(-3-8) \\
& =7+19-22=4 \neq 0 \tag{i}
\end{align*}
$$

\therefore Solution is unique and $\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}=\frac{1}{|\mathbf{A}|}$ (adj. A) B
Let us find adj. A

Equating corresponding entries, we have $x=2, y=1, z=3$.
15. If $A=\left[\begin{array}{rrr}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$, find A^{-1}. Using A^{-1}, solve the system of equations

$$
\begin{array}{r}
2 x-3 y+5 z=11 \\
3 x+2 y-4 z=-5 \\
x+y-2 z=-3
\end{array}
$$

Sol. Given: Matrix $A=\left[\begin{array}{rrr}2 & -3 & 5 \\ 3 & 2 & -4 \\ \lfloor 1 & 1 & -2 \mid\end{array}\right]$

To find A^{-1}

$$
|\mathrm{A}|=\left|\begin{array}{rrr}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right|
$$

Expanding along first row,

$$
\begin{align*}
|A| & =2(-4+4)-(-3)(-6+4)+5(3-2) \\
& =0+3(-2)+5=-6+5=-1 \neq 0 \tag{i}
\end{align*}
$$

$\therefore \quad A^{-1}$ exists and $A^{-1}=\frac{1}{|A|}($ adj. A)
To find adj. A from $|\mathrm{A}|=\left|\begin{array}{rrr}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right|$
$\mathrm{A}_{11}=+\left\lvert\, \begin{gathered}2 \\ \left|\begin{array}{c}- \\ \mathbf{1}_{\square}-2\end{array}\right|=(-4+4)=0,\end{gathered}\right.$

$$
\begin{aligned}
& A_{12}=-\left|\begin{array}{rr}
3 & -4 \\
1 & -2
\end{array}\right|=-(-6+4)=2, \\
& A_{13}=+\left|\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right|=3-2=1, \\
& A_{21}=-\left|\begin{array}{lr}
-3 & 5
\end{array}\right|=-(6-5)=-1,
\end{aligned}
$$

A

$$
\begin{equation*}
\mathrm{A}_{22}=+ \tag{3}
\end{equation*}
$$

$$
\mathrm{A}_{23}=-
$$

2

$$
\mathrm{A}_{31}=+
$$

$1-2$

$$
\begin{aligned}
& \mathrm{A}_{33}=+\left|\begin{array}{rr}
2 & -3 \\
3 & 2
\end{array}\right|=(4+9)=13 . \\
& \therefore \quad \text { adj. } \mathrm{A}=\left.\begin{array}{rrr}
0 & 2 & 1 \\
-1 & -9 & -5
\end{array}\right|^{\prime}=\left[\left.\begin{array}{lll}
0 & -1 & 2 \\
2 & -9 & 23
\end{array} \right\rvert\,\right. \\
&\left|\begin{array}{lrr}
\mid & 23
\end{array}\right|
\end{aligned}
$$

Putting this value of adj. A in (i),

$$
\begin{aligned}
& -1\left\lfloor\begin{array}{ll}
& \mid \\
1 & -5 \\
13
\end{array}\right\rfloor\left[\begin{array}{lll}
-1 & 5 & -13
\end{array}\right] \quad\left(\begin{array}{ll}
-1
\end{array}\right)
\end{aligned}
$$

Now using (this) A^{-1}, we are to solve the equations

$$
\begin{aligned}
2 x-3 y+5 z & =11 \\
3 x+2 y-4 z & =-5 \\
x+y-2 z & =-3
\end{aligned}
$$

Their matrix form is $\begin{array}{ccc}{\left[\begin{array}{rr}2 & -3 \\ 3 & 2\end{array}\right.} & -4 \\ 3\end{array} \left\lvert\,\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}11\rceil \\ -5\end{array} \quad(\Rightarrow \mathrm{AX}=\mathrm{B})\right.\right.$

$$
\left\lfloor\begin{array}{lrr}
& & ||\mid \\
\mathbf{1} & \mathbf{1} & -2\rfloor\lfloor \\
z\rfloor & \lfloor-3\rfloor
\end{array}\right.
$$

Comparing $\mathrm{A}=\left[\begin{array}{rrr}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \mid\end{array}\right], \mathrm{X}=\left[\begin{array}{c}x \\ y \\ z\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{c}11 \\ -5 \\ -3\end{array}\right]$
Solution is unique and $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} \quad\left(\because \mathrm{~A}^{-1}\right.$ exists by (ii))

$$
\begin{aligned}
& \lceil x\rceil\left\lceil\begin{array}{lll}
0 & 1 & -2\rceil\lceil 11\rceil
\end{array}\right. \\
& \left\lfloor\begin{array}{l}
y \\
z \\
y
\end{array}=\left\lfloor\begin{array}{lll}
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right\rfloor\left\lfloor\begin{array}{l}
-5 \\
-3
\end{array}\right\rfloor\right.
\end{aligned}
$$

Putting values,

$$
\begin{aligned}
& \lceil x\rceil\left\lceil\begin{array} { r }
{ \lceil \rceil - 6 \rceil } \\
{ \lfloor y \rceil } \\
{ y } \\
{ z }
\end{array} \left|=\left|\begin{array}{l}
\lceil 1\rceil \\
-22-45+69 \\
-11-25+39
\end{array}\right|=\left\lfloor\begin{array}{l}
2 \\
3
\end{array}\right\rfloor\right.\right.
\end{aligned}
$$

Equating corresponding entries, we have $x=1, y=2, z=3$.
16. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is `60 . The cost of 2 kg onion, 4 kg wheat and 6 kg rice is` 90 . The cost
 Academy

each item per kg by matrix method.

Sol. Let ${ }^{\prime} x$, ${ }^{~} y$, $z z$ per kg be the prices of onion, wheat and rice respectively.
\therefore According to the given data, we have the following three equations

$$
\begin{aligned}
4 x+3 y+2 z & =60 \\
2 x+4 y+6 z & =90 \\
6 x+2 y+3 z & =70
\end{aligned}
$$

and

We know that these equations can be expressed in the matrix form as
or

$$
\left[\begin{array}{lll}
4 & 3 & 2 \\
2 & 4 & 6 \\
6 & 2 & 3
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
60 \\
90 \\
70
\end{array}\right]
$$

$$
\text { where } \mathrm{A}=\left[\begin{array}{lll}
4 & 3 & 2 \\
2 & 4 & 6 \\
6 & 2 & 3
\end{array}\right], \mathrm{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{l}
60 \\
90 \\
70
\end{array}\right]|\mathrm{A}|=\left|\begin{array}{lll}
4 & 3 & 2 \\
2 & 4 & 6 \\
6 & 2 & 3
\end{array}\right|
$$

Expanding along first row,

$$
\begin{aligned}
|A| & =4(12-12)-3(6-36)+2(4-24) \\
& =0-3(-30)+2(-20)=90-40=50 \neq 0
\end{aligned}
$$

Hence A is non-singular
$\therefore \mathrm{A}^{-1}$ exists.
\therefore Unique solution is $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}$

$$
\begin{array}{ll}
\mathrm{A}_{11}=+(12-12)=0, & \mathrm{~A}_{12}=-(6-36)=30 \tag{i}\\
\mathrm{~A}_{13}=+(4-24)=-20 & \\
\mathrm{~A}_{21}=-(9-4)=-5, & \mathrm{~A}_{22}=+(12-12)=0 \\
\mathrm{~A}_{23}=-(8-18)=10 & \mathrm{~A}_{31}=+(18-8)=10 \\
\mathrm{~A}_{32}=-(24-4)=-20, & \mathrm{~A}_{33}=+(16-6)=10
\end{array}
$$

$$
\therefore \quad \therefore \quad \text { adj. } \mathrm{A}=\begin{array}{rrr}
0 & 30 & -20 \\
\hline
\end{array}\left|\begin{array}{rrr}
1 \\
-5 & 0 & 10
\end{array}\right|=\left|\begin{array}{rrr}
0 & -5 & 10 \\
30 & 0 & -20 \\
\left.\left\lvert\, \begin{array}{rrr}
10 & -20 & 10
\end{array}\right.\right]
\end{array}\right|
$$

$$
|A| \quad 50\left[\begin{array}{lll}
-20 & 10 & 10
\end{array}\right]
$$

Putting values of $\mathrm{X}, \mathrm{A}_{\mathrm{O}}^{-1}$ and B in (i), we have

$$
\begin{aligned}
&= \underline{1}\left[\begin{array}{c}
-450+700 \\
1800-1400
\end{array}\right]= \\
& 50\lfloor-1200+900+700\rfloor
\end{aligned} \frac{1}{40}\left\lfloor\begin{array}{l}
250 \\
400 \\
400\rfloor
\end{array}\right]
$$

$$
\text { or }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
5 \\
8 \\
8
\end{array}\right]
$$

$\Rightarrow x=5, y=8, z=8$.
\therefore The cost of onion, wheat and rice are respectively `5 ,` 8 and ` 8 per kg.

MISCELLANEOUS EXERCISE

1. Prove that the determinant $\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$ is independent of θ
Sol. Let $\Delta=\left|\begin{array}{ccc}\mathrm{x} & \sin \theta & \cos \theta \\ -\sin \theta & -\mathrm{x} & \mathbf{l} \\ \cos \theta & \mathbf{l} & \mathrm{x}\end{array}\right|$
Expanding along first row

$$
\begin{aligned}
& \left.\Delta=x\left|\begin{array}{rrrr}
-\mathrm{x} & \mathbf{l} \\
\mathbf{l} & \mathbf{x}
\end{array}\right| \begin{array}{rrr}
-\sin \theta & -\sin \theta & \mathbf{l} \\
\cos \theta & \mathbf{x}
\end{array}|+\cos \theta| \begin{aligned}
-\sin \theta & -\mathrm{x} \\
\cos \theta & \mathbf{l}
\end{aligned} \right\rvert\, \\
& =x\left(-x^{2}-1\right)-\sin \theta(-x \sin \theta-\cos \theta)+\cos \theta \\
& (-\sin \theta+x \cos \theta) \\
& =-x^{3}-x+x \sin ^{2} \theta+\boldsymbol{\operatorname { s i n }} \theta \cos \theta-\boldsymbol{\operatorname { s i n }} \theta \boldsymbol{\operatorname { c o s }} \theta \\
& +x \cos ^{2} \theta \\
& =-x^{3}-x+x\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=-x^{3}-x+x \\
& =-x^{3} \text { which is free from } \theta \text { i.e., independent of } \theta \text {. }
\end{aligned}
$$

2. Without expanding the determinants, prove that

$$
\begin{aligned}
& \left|\begin{array}{lll}
a & a^{2} & b c \\
b & b^{2} & c a
\end{array}\right|=\left|\begin{array}{lll}
1 & a^{2} & a^{3} \\
1 & b^{2} & b^{3}
\end{array}\right| . \\
& \text { c } c^{2} \quad a b \quad 1 \quad c^{2} \quad c^{3}
\end{aligned}
$$

Sol. L.H.S. $=\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|$
Multiplying R_{1} by a, R_{2} by b and R_{3} by c (by looking at the partial products in third column)

$$
=\frac{\mathbf{l}}{a b c}\left|\begin{array}{lll}
a^{2} & a^{3} & a b c \\
b^{2} & b^{3} & a b c \\
c^{2} & c^{3} & a b c
\end{array}\right|
$$

$$
\begin{aligned}
& \text { Taking } a b c \text { common from } \mathrm{C}_{3},=\frac{a b c}{a b c}\left|\begin{array}{lll}
a^{2} & a^{3} & \mathbf{1} \\
b^{2} & b^{3} & \mathbf{1} \\
c^{2} & c^{3} & \mathbf{1}
\end{array}\right| \\
& \text { Interchanging } C_{1} \text { and } C_{3},=-\left|\begin{array}{ccc}
\mathbf{1} & a^{3} & a^{2} \\
\mathbf{1} & b^{3} & b^{2} \\
\mathbf{1} & c^{3} & c^{2}
\end{array}\right| \\
& \text { Interchanging } C_{2} \text { and } C_{3},=\left|\begin{array}{ccc}
1 & a^{2} & a^{3} \\
1 & b^{2} & b^{3} \\
1 & c^{2} & c^{3}
\end{array}\right|(\because(-1)(-1)=1) \\
& \text { = R.H.S. } \\
& \text { 3. Evaluate }\left|\begin{array}{ccc}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\boldsymbol{\operatorname { s i n }} \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha
\end{array}\right| \text {. } \\
& \text { Sol. Let } \Delta=\left|\begin{array}{ccc}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha
\end{array}\right| \\
& \text { Expanding along } \mathrm{R}_{1} \text {, } \\
& =\cos \alpha \cos \beta\left|\begin{array}{cc}
\cos \beta & 0 \\
\sin \alpha \sin \beta & \cos \alpha
\end{array}\right|-\cos \alpha \sin \beta \\
& \left|\begin{array}{lc}
-\sin \beta & 0 \\
\sin \alpha \cos \beta & \cos \alpha
\end{array}\right|-\sin \alpha\left|\begin{array}{cc}
-\sin \beta & \cos \beta \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta
\end{array}\right| \\
& =\cos \alpha \cos \beta(\cos \alpha \cos \beta-0)-\cos \alpha \sin \beta(-\cos \alpha \sin \beta \\
& -0)-\sin \alpha\left(-\sin \alpha \sin ^{2} \beta-\sin \alpha \cos ^{2} \beta\right) \\
& =\cos ^{2} \alpha \cos ^{2} \beta+\cos ^{2} \alpha \sin ^{2} \beta+\sin ^{2} \alpha\left(\sin ^{2} \beta+\cos ^{2} \beta\right) \\
& =\cos ^{2} \alpha\left(\cos ^{2} \beta+\sin ^{2} \beta\right)+\sin ^{2} \alpha\left(\sin ^{2} \beta+\cos ^{2} \beta\right) \\
& =\cos ^{2} \alpha+\sin ^{2} \alpha=1 \text {. }
\end{aligned}
$$

4. If a, b and c are real numbers and

$$
\Delta=\left\lvert\, \begin{array}{ccc}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a \\
\text { CUET } \\
\text { AUCademy }
\end{array}=0\right.
$$

Show that either $a+b+c=0$ or $a=b=c$.
Sol. Given: $(\Delta=)\left|\begin{array}{lll}b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|=0$

Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
$(\because$ Sum of entries of each column is same and

$$
\begin{gathered}
=2 a+2 b+2 c=2(a+b+c)) \\
\Rightarrow\left|\begin{array}{ccc}
2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|=0
\end{gathered}
$$

Taking out $2(a+b+c)$ common from R_{1}.
$\Rightarrow \quad 2(a+b+c)\left|\begin{array}{ccc}\mathbf{1} & \mathbf{1} & \mathbf{1} \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|=\mathrm{o}$
$\therefore \quad \mathrm{E}$ ther $2(a+b+c)=0$ i.e., $a+b+c=\frac{0}{2}=0$
or

$$
\left|\begin{array}{ccc}
\mathbf{1} & \mathbf{1} & \mathbf{1} \tag{i}\\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|=0
$$

Now each entry of first row is 1 .
So operate $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$ (to create two zeros in first row)
$\Rightarrow \quad\left|\begin{array}{ccc}1 & 0 & 0 \\ c+a & a+b-c-a & b+c-c-a \\ a+b & b+c-a-b & c+a-a-b\end{array}\right|=0$
Expanding along $\mathrm{R}_{1}, \quad \Rightarrow\left|\begin{array}{ll}b-c & b-a \\ c-a & c-b\end{array}\right|=0$

$$
\begin{array}{lr}
\Rightarrow & (b-c)(c-b)-(b-a)(c-a)=0 \\
\Rightarrow & b c-b^{2}-c^{2}+b c-b c+a b+a c-a^{2}=0 \\
\Rightarrow & -a^{2}-b^{2}-c^{2}+a b+b c+a c=0
\end{array}
$$

Multiplying by $-2,2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 b c-2 a c=0$
or $\quad a^{2}+a^{2}+b^{2}+b^{2}+c^{2}+c^{2}-2 a b-2 b c-2 a c=0$
or $\left(a^{2}+b^{2}-2 a b\right)+\left(b^{2}+c^{2}-2 b c\right)+\left(a^{2}+c^{2}-2 a c\right)=0$
$\Rightarrow \quad(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0$
$\Rightarrow a-b=0$ and $b-c=0$ and $c-a=0$

$$
\left[\because x^{2}+y^{2}+z^{2}=0 \quad \text { and } \quad x, y, z \in \mathrm{R}\right.
$$

$$
\begin{equation*}
\Rightarrow x=0, y=0 \text { and } z=0 \text {] } \tag{ii}
\end{equation*}
$$

$\Rightarrow a=b$ and $b=c$ and $c=a \Rightarrow a=b=c$
From (i) and (ii) either $a+b+c=0$ or $a=b=c$.
Note. We can also start doing this question by operating
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$.
5. Solve the equation $\left|\begin{array}{ccc}x+a & x & x \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0, a \neq 0$.

Sol. Given: The equation $\left|\begin{array}{ccc}x+a & x & x \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0$
Sum of entries of each column is same and $=(3 x+a)$, so let us operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$

$$
\Rightarrow \quad\left|\begin{array}{ccc}
3 x+a & 3 x+a & 3 x+a \\
x & x+a & x \\
x & x & x+a
\end{array}\right|=0
$$

Taking out $(3 x+a)$ common from R_{1}

$$
\Rightarrow \quad(3 x+a)\left|\begin{array}{ccc}
\mathbf{1} & \mathbf{1} & \mathbf{1} \\
x & x+a & x \\
x & x & x+a
\end{array}\right|=0
$$

\therefore Either $3 x+a=0$ i.e., $\quad 3 x=-a$ i.e., $\quad x=-\frac{a}{3}$
or

$$
\left|\begin{array}{ccc}
1 & 1 & \mathbf{1} \tag{i}\\
x & x+a & x \\
x & x & x+a
\end{array}\right|=0
$$

Now each entry of first row is 1 , so operate $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$ (to create two zeros in first row)

$$
\Rightarrow \quad\left|\begin{array}{lll}
1 & 0 & 0 \\
x & a & 0 \\
x & 0 & a
\end{array}\right|=0
$$

Expanding along first row $1\left(a^{2}-0\right)=0$ i.e., $a^{2}=0$ $\Rightarrow a=0$. But this is contrary to given that $a \neq 0$.
\therefore From (i) $x=-\frac{\underline{a}}{3}$ is the only solution (root).
Note. We can also start doing this question by operating

$$
\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} .
$$

6. Prove that $\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$.

$$
a b \quad b^{2}+b c \quad c^{2}
$$

CUET
Academy

Sol. L.H.S. $=\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ & & \\ a b & b^{2}+b c & c^{2}\end{array}\right|$

$$
=\left|\begin{array}{ccc}
a^{2} & b c & c(a+c) \\
a(a+b) & b^{2} & a c \\
a b & b(b+c) & c^{2}
\end{array}\right|
$$

Taking a, b, c common from $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ respectively

$$
=a b c\left|\begin{array}{ccc}
a & c & a+c \\
a+b & b & a \\
b & b+c & c
\end{array}\right|
$$

Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}-\mathrm{R}_{3}$ (to create one zero in R_{1})

$$
\begin{aligned}
& =a b c\left|\begin{array}{ccc}
a-a-b-b & c-b-b-c & a+c-a-c \\
a+b & b & a \\
b & b+c & c
\end{array}\right| \\
& =a b c\left|\begin{array}{ccc}
-2 b & -2 b & 0 \\
a+b & b & a \\
b & b+c & c
\end{array}\right|
\end{aligned}
$$

Operate $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ (to create another zero in R_{1})

$$
=a b c\left|\begin{array}{ccc}
-2 b & 0 & 0 \\
a+b & -a & a \\
b & c & c
\end{array}\right|
$$

Expanding along $\mathrm{R}_{1}=a b c(-2 b)\left|\begin{array}{cc}-a & a \\ c & c\end{array}\right|$

$$
\begin{aligned}
& =a b c(-2 b)(-a c-a c) \\
& =a b c(-2 b)(-2 a c)=4 a^{2} b^{2} c^{2}=\text { R.H.S. }
\end{aligned}
$$

7. If $A^{-1}=\left[\begin{array}{rrr}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$ and $B=\left[\left.\begin{array}{rrr}1 & 2 & -2 \\ -1 & 3 & 0\end{array} \right\rvert\,\right.$, find $(A B)^{-1}$.

Sol. Given: $A^{-1}=\left\lceil\begin{array}{rrr}3 & -1 & 1 \\ -15 & 6 & -5\end{array}\right\rceil$ and $\left.B=\begin{array}{rrr}1 & 2 & -2 \\ -1 & 3 & 0\end{array}\right\rceil$

$$
\left.\begin{array}{|ccccc}
\mid & & \mid & \mid & \tag{i}\\
\mid & 5 & -2 & 2 \mid
\end{array}\right] \left.\quad\left\lfloor\begin{array}{lll}
\mid & 0 & -2
\end{array} 1\right\rfloor \right\rvert\,
$$

We know that $(\mathbf{A B})^{-\mathbf{1}}=\mathbf{B}^{\mathbf{- 1}} \mathbf{A}^{\mathbf{- 1}} \quad$ (Reversal Law)
Now A^{-1} is given, so let us find B^{-1}.

$$
|\mathrm{B}|=\left|\begin{array}{rrr}
1 & 2 & -2 \\
-1 & 3 & 0 \\
0 & -2 & 1
\end{array}\right|
$$

Expanding along firstrarcuET

$$
\begin{aligned}
|\mathrm{B}| & =1(3-0)-2(-1-0)+(-2)(2-0) \\
& =3+2-4=1 \neq 0
\end{aligned}
$$

$\therefore \mathrm{B}^{-1}$ exists.

To find adj. B

$$
\begin{align*}
& B_{11}=+\left|\begin{array}{cc}
3 & 0 \\
-2 & 1
\end{array}\right|=(3-0)=3, \\
& \mathrm{~B}_{12}=-\left|\begin{array}{rr}
-\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}
\end{array}\right|=-(-\mathbf{1}-0)=\mathbf{1} \\
& B=+\left\lvert\, \begin{array}{ll}
-1 & 3
\end{array}=2\right., \\
& \mathrm{~B}_{21}=-\left|\begin{array}{cc}
0 & -2 \\
2 & -2
\end{array}\right|=-(2-4)=2, \\
& -2 \quad 1 \\
& B_{22}=+\left|\begin{array}{rr}
1 & -2 \\
0 & 1
\end{array}\right|=1-0=1, \\
& \mathrm{~B}_{23}=-\left|\begin{array}{lr}
1 & 2 \\
0 & -2
\end{array}\right|=-(-2-0)=2, \\
& \mathrm{~B}_{31}=+\left|\begin{array}{rr}
2 & -2 \\
3 & 0
\end{array}\right|=(\mathrm{o}+6)=6, \\
& B_{32}=-\left\lvert\, \begin{array}{ll}
1 & -2
\end{array}=-(0-2)=2\right., \\
& \mathrm{~B}_{33}=+\left|\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right|=(3+2)=5 . \\
& \therefore \quad \operatorname{adj} . B=\left[\left.\begin{array}{ccc}
3 & 1 & 2 \\
2 & 1 & 2 \\
\lfloor 6 & 2 & 5
\end{array} \right\rvert\,\right\rfloor=\left[\begin{array}{lll}
3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right] \\
& \therefore \quad B^{-1}=\frac{1}{|B|}(\operatorname{adj} . B)=\left[\begin{array}{lll}
3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right]
\end{align*}
$$

Putting values of B^{-1} and A^{-1} in eqn. (i), we have

$$
\begin{array}{ll}
-3+12-12 & 3-10+ \\
-1+6-4 & 12 \\
-2+12-10^{1} &
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
- \\
5 \\
+ \\
4
\end{array} \\
& 2 \\
& - \\
& 1 \\
& 0 \\
& + \\
& 1 \\
& 0 \\
& \mid \\
& \vdots \\
& {\left[\begin{array}{rrr}
9 & -3 & 5 \\
\hline-2 & 1 & 0 \\
\lfloor & 1 & 0
\end{array}\right]}
\end{aligned}
$$

8. Let $\mathbf{A}=\left[\left.\begin{array}{rrr}1 & -2 & 1 \\ -2 & 3 & 1\end{array} \right\rvert\,\right.$, verify that
$\left[\begin{array}{lll}1 & 1 & 5\end{array}\right]$
(i) $(\operatorname{adj} . \mathrm{A})^{-1}=\operatorname{adj} .\left(\mathrm{A}^{-1}\right)$
(ii) $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$.

Sol. Given: Matrix $A=$| $\left\|\begin{array}{rrr}1 & -2 & 1 \\ -2 & 3 & 1\end{array}\right\|$ |
| :---: | :---: | :---: |
| $\left\|\begin{array}{lll}\mid & 1 & 5\end{array}\right\|$ |\(|\therefore| A\left|=\left|\begin{array}{rrr}1 \& -2 \& 1

-2 \& 3 \& 1

-2\end{array}\right|\right.\)

$$
\begin{aligned}
& =1(15-1)-(-2)(-10-1)+1(-2-3) \\
& =14-22-5=-13 \neq 0
\end{aligned}
$$

To find adj. A

$$
\begin{aligned}
& \mathrm{A}_{11}=+\left|\begin{array}{ll}
3 & 1 \\
1 & 5
\end{array}\right|=15-1=14, \\
& A_{12}=-\left|\begin{array}{rr}
-2 & 1 \\
1 & 5
\end{array}\right|=-(-10-1)=11 \\
& A_{13}=+\left|\begin{array}{rr}
-2 & 3 \\
1 & 1
\end{array}\right|=(-2-3)=-5, \\
& \mathrm{~A}_{21}=-\left|\begin{array}{rr}
-2 & 1 \\
1 & 5
\end{array}\right|=-(-10-1)=11 \\
& A_{22}=+\left|\begin{array}{ll}
1 & 1 \\
1 & 5
\end{array}\right|=(5-1)=4, \\
& \mathrm{~A}_{23}=-\left|\begin{array}{rr}
1 & -2 \\
1 & \mathbf{1}
\end{array}\right|=-(1+2)=-3 \\
& \mathrm{~A}_{31}=+\left|\begin{array}{rr}
-2 & 1 \\
3 & 1
\end{array}\right|=-2-3=-5, \\
& A_{32}=-\left|\begin{array}{rr}
1 & 1 \\
-2 & 1
\end{array}\right|=-(1+2)=-3 \\
& \mathrm{~A}_{33}=+\left|\begin{array}{ll}
1 & -2
\end{array}\right|=3-4=-1 . \\
& -23 \\
& \left\lceil\begin{array}{lll}
14 & 11 & -5
\end{array}\right\rceil^{\prime}
\end{aligned}
$$

$$
\begin{align*}
& \left\lfloor\begin{array}{lll}
& & \mid \\
-5 & -3 & -1
\end{array}\right] \\
& =\left[\begin{array}{rrr}
14 & 11 & -5 \\
11 & 4 & -3
\end{array}\right\rceil \\
& \left\lfloor\begin{array}{lll}
-5 & -3 & -1
\end{array}\right] \\
& \therefore \quad \mathrm{A}^{-1}=\underset{|\mathrm{A}|}{ } \mathrm{adj} . \mathrm{A}=\begin{array}{l}
\underline{-1} \\
13
\end{array}\left|\begin{array}{ccc}
14 & 11 & -5\rceil \\
11 & 4 & -3
\end{array}\right| \tag{i}\\
& \left\lfloor\begin{array}{lll}
-5 & -3 & -1
\end{array}\right]
\end{align*}
$$

Now let us find $(\operatorname{adj} . A)^{-1}=B^{-1}$

$$
|\mathrm{B}|=\left|\begin{array}{rrr}
14 & 11 & -5 \\
11 & 4 & -3 \\
-5 & -3 & -1
\end{array}\right|
$$

Expanding along first row,

$$
\begin{aligned}
|\mathrm{B}| & =14(-4-9)-11(-11-15)-5(-33+20) \\
& =14(-13)-11(-26)-5(-13) \\
& =-182+286+65=-182+351=169 \neq 0
\end{aligned}
$$

To find adj. B

$$
\begin{aligned}
& \mathrm{B}_{11}=+\left|\begin{array}{rr}
4 & -3 \\
-3 & -1
\end{array}\right|=(-4-9)=-13 \\
& \mathrm{~B}_{12}=-\left|\begin{array}{rr}
11 & -3 \\
-5 & -1
\end{array}\right|=-(-11-15)=26 \\
& \mathrm{~B}_{13}=+\left|\begin{array}{rr}
11 & 4
\end{array}\right|=+(-33+20)=-13 \\
& -5 r-3 \\
& \mathrm{~B}_{21}=-\left|\begin{array}{rr}
11 & -5 \\
-3 & -1
\end{array}\right|=-(-11-15)=26 \\
& \mathrm{~B}_{22}=+\left|\begin{array}{rr}
14 & -5 \\
-5 & -1
\end{array}\right|=(-14-25)=-39 \\
& \mathrm{~B}_{23}=-\left|\begin{array}{rr}
14 & 11 \\
-5 & -3
\end{array}\right|=-(-42+55)=-13 \\
& \mathrm{~B}_{31}=+\left|\begin{array}{rr}
11 & -5 \\
4 & -3
\end{array}\right|=-33+20=-13 \\
& \mathrm{~B}_{32}=-\left|\begin{array}{rr}
14 & -5 \\
11 & -3
\end{array}\right|=-(-42+55)=-13 \\
& \mathrm{~B}_{33}=+\left|\begin{array}{rr}
14 & 11 \\
11 & 4
\end{array}\right|=(56-121)=-65
\end{aligned}
$$

$$
\left.\begin{array}{lll}
\lceil-13 & 26 & -13
\end{array}\right\rceil^{\prime} \quad\lceil-13 \quad 26 \quad-13\rceil
$$

$$
\therefore \text { adj. } B=\left\{\begin{array} { c c c }
{ 2 6 } & { - 3 9 } & { - 1 3 } \\
{ - 1 3 } & { \text { -35AG5 ACAd } }
\end{array} \left|=\left|\begin{array}{ccc}
26 & -39 & -13 \\
-13 & -13 & -65
\end{array}\right|\right.\right.
$$

Taking - 13 common from this matrix adj. B

$$
\begin{aligned}
&\left.=-13 \begin{array}{rrr}
{\left[\left.\begin{array}{rrr}
1 & -2 & 1 \\
-2 & 3 & 1
\end{array} \right\rvert\,\right.} \\
\left\lfloor^{\mid}\right. & 1 & 5
\end{array}\right] \\
& \therefore \quad B^{-1} \text { i.e., }(\operatorname{adj} . \mathrm{A})^{-1}=\frac{1}{|\mathrm{~B}|} \text { adj. } \mathrm{B}
\end{aligned}
$$

Now let us find $\left(\begin{array}{c}-1\end{array}\right)^{-1} \quad \mathbf{A}^{-1}=\mathbf{C} \begin{aligned} & \left.\left\lvert\, \begin{array}{ccc}\mid & 1 & 5\end{array}\right.\right] \\ & (\text { say }) \text { where }\end{aligned}$

$$
\mathrm{C}=\mathrm{A}^{-1}=\stackrel{-1}{\lceil }\left|\begin{array}{ccc}
14 & 11 & -5\rceil \\
11 & 4 & -3
\end{array}\right|
$$

$$
[\operatorname{By}(i)]
$$

or

$$
\therefore \quad|\mathrm{C}|=\left|\mathrm{A}^{-1}\right|=-\frac{14}{}{ }^{\lfloor }\left(_{-} 13 \begin{array}{cc}
13 & 13 \\
\hline
\end{array}\right)
$$

$$
13 \quad\left(\begin{array}{ll}
169 & 169
\end{array}\right)
$$

$$
-(-\underline{11})\left(-\frac{11}{-15}\right)+5\left(-33+\frac{20}{}\right)
$$

$$
\left.\left.13 \text {) } \begin{array}{ll}
169 & 169
\end{array}\right) \quad 13 \text { (} \begin{array}{ll}
169 & 169
\end{array}\right)
$$

$$
=-\underline{14}(-13)+\underline{11}\left({ }_{-} \underline{26}\right)+\frac{5}{}(-13)
$$

$$
\left.13 \left\lvert\,\left(\begin{array}{ll}
169
\end{array}\right) \quad 13 \begin{array}{ll}
& 169
\end{array}\right.\right) \quad 13 \left\lvert\,\left(\begin{array}{ll}
& 169
\end{array}\right)\right.
$$

$$
=\frac{14}{169}-\frac{22}{169}-\frac{5}{169}=\frac{14-22-5}{169}=-\frac{13}{169}=\frac{-1}{13} \neq 0
$$

Let us now find adj. C ie., adj. (A^{-1})

$$
\ldots 4
$$

$$
\begin{align*}
& \left\lceil\begin{array}{lll}
1 & & \\
& -2 & 1
\end{array}\right\rceil \\
& ={ }_{169}(-13)|-2 \quad 3 \quad 1| \\
& \left.\begin{array}{llll}
l & 1 & 1 & 5
\end{array}\right] \\
& =\frac{-1}{}\left\lceil\begin{array}{rrr}
1 & -2 & 1\rceil \\
13
\end{array}|-2 r r r|\right. \tag{ii}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{C}_{11}=+\begin{array}{cccc}
13 & 13 \\
3 & \underline{1}
\end{array} \quad-{ }_{169}{ }^{-}{ }_{169}{ }^{\prime} \mathrm{J}=169={ }_{13} \\
& 13 \quad 13 \\
& \left.C_{12}=-\left|\begin{array}{cc}
-\frac{11}{13} & \frac{3}{13} \\
\frac{5}{13} & \frac{1}{13}
\end{array}\right|=-\left(\begin{array}{c}
(-\underline{11} \\
169 \\
169
\end{array}\right)=\begin{array}{l}
\underline{2} \underline{6} \\
169
\end{array}\right) \underline{\underline{2}} \begin{array}{l}
13
\end{array}
\end{aligned}
$$

$$
\mathrm{C}_{31}=+\left|\begin{array}{cc}
-\frac{11}{13} & \frac{5}{13} \\
\frac{-4}{13} & 3 \\
13
\end{array}\right|=-\frac{33}{169}+\frac{20}{169}=-\frac{13}{169}=-\frac{1}{13}
$$

$$
\mathrm{C}_{32}=-\left|\begin{array}{rr}
-\frac{14}{13} & \frac{5}{13} \\
-\frac{11}{13} & \frac{3}{13}
\end{array}\right|=-\left(\left.\left(-\frac{42}{169}+\frac{55}{169}\right) \right\rvert\,\right)=-\frac{13}{169}=-\frac{1}{13}
$$

$$
13 \quad 13
$$

$$
\therefore \quad \text { adj. } \mathrm{C}=\operatorname{adj} .\left(\mathrm{A}^{-1}\right)=\left|\begin{array}{ccc}
13 & 13 & 13 \\
\underline{2} & 3 & \underline{1}
\end{array}\right|
$$

$$
\left|\begin{array}{ccc}
13 & 13 & 13 \\
1 & 1_{-} & 5^{5}
\end{array}\right|
$$

$$
\left\lfloor\begin{array}{lll}
13 & 13 & 13
\end{array}\right.
$$

$$
\begin{array}{ll}
\text { CUIET } \\
\text { Academy } & -17
\end{array}
$$

$$
\begin{aligned}
& C=-\left|\begin{array}{rr}
-\frac{11}{13} & \frac{5}{13} \\
3 & 1 \\
13 & 13
\end{array}\right|=-\left(-\frac{11}{(15}-\frac{15}{169} 169\right)=\frac{26}{169}=\frac{2}{13} \\
& \mathrm{C}_{22}=+\left|\begin{array}{cc}
-\frac{14}{13} & \frac{5}{13} \\
\frac{5}{5} & \frac{1}{13} \\
13 & 13
\end{array}\right|=-\frac{14}{169}-\frac{25}{169}=-\frac{39}{169}=-\frac{3}{13}
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
13 & 13 & 13 \\
\underline{2} & -3 & -\underline{1} \\
13 & -13 & -\frac{13}{13} \\
1 & -\underline{1} & - \\
- & - & - \\
13 & 13 & 13
\end{array}\right|
\end{aligned}
$$

Taking $-\frac{1}{13}$ common,

$$
\left.\Rightarrow \operatorname{adj} . \mathrm{C}=\operatorname{adj} .\left(\begin{array}{ll}
-1 & \underline{1} \\
\mathrm{~A}
\end{array}\right)=-{ }_{13} \right\rvert\, \begin{array}{ccc}
1 & -2 & 1\rceil \tag{iii}\\
-2 & 3 & 1
\end{array}
$$

$\left.\begin{array}{llll} & 1 & 1 & 5\end{array}\right\rfloor$
From (ii) and (iii), we can say that (adj. A$)^{-1}=\operatorname{adj} .\left(\mathrm{A}^{-1}\right)$ (\because R.H.Sides of eqns. (ii) and (iii) same)
Hence first part is verified.

$$
\begin{aligned}
& \left.\left(\begin{array}{lll}
-13
\end{array}\right) \quad \left\lvert\, \begin{array}{lll}
\mid & 1 & 1
\end{array} 5^{\mid}\right.\right\rfloor \\
& \left\lceil\begin{array}{lll}
1 & -2 & 1
\end{array}\right\rceil \\
& \Rightarrow\left(\mathrm{A}^{-1}\right)^{-1}={ }^{\mid}-2 \quad 3 \mathrm{l}^{1}=\mathrm{A} \text { (given) } \\
& \left|\begin{array}{lll}
1 & 1 & 5
\end{array}\right| \\
& \text { Hence second part is verified. }
\end{aligned}
$$

9. Evaluate $\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$.

Sol. Let $\Delta=\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$
Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$ (because sum of entries of each column is same and $=2 x+2 y=2(x+y))$

$$
=\left|\begin{array}{ccc}
2(x+y) & 2(x+y) & 2(x+y) \\
y & x+y & x \\
x+y & x & y
\end{array}\right|
$$

Taking out $2(x+y)$ common from R_{1},

$$
=2(x+y)\left|\begin{array}{ccc}
\mathbf{1} & \mathbf{1} & \mathbf{1} \\
y & x+y & x \\
x+y & x & y
\end{array}\right|
$$

Now each entry of first row is 1 , so let us operate $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}$ $-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$ (to create two zeros in first row)

$$
=2(x+y) \quad \text { DSACET AMy }
$$

$$
\begin{aligned}
& y \quad x+y-y \quad x-y \\
& =2(x+y) \\
& x+y \quad x-x-y \quad y-x-y \\
& \left|\begin{array}{ccc}
1 & 0 & 0 \\
y & x & x-y \\
x+y & -y & -x
\end{array}\right|
\end{aligned}
$$

Expanding along $\mathrm{R}, \Delta=2(x+y) \cdot 1 \quad x \quad x-y$

$$
\begin{aligned}
& 1 \\
& =2(x+y)\left(-x^{2}+y(x-y)\right)=2(x+y)\left(-x^{2}+x y-y^{2}\right) \\
& =-2(x+y)\left(x^{2}+y^{2}-x y\right)=-2\left(x^{3}+y^{3}\right) \\
& \quad\left[\because x^{3}+y^{3}=(x+y)\left(x^{2}+y^{2}-x y\right)\right]
\end{aligned}
$$

Remark. This question can also be done by operating

$$
\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}
$$

10. Evaluate $\left|\begin{array}{ccc}1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y\end{array}\right|$.

Sol. Let $\Delta=\left|\begin{array}{ccc}1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y\end{array}\right|$

Each entry of one column (here first) is 1.
Sol let us operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$ (to create two zeros in first column)

$$
=\left|\begin{array}{ccc}
1 & x & y \\
0 & x+y-x & 0 \\
0 & 0 & x+y-y
\end{array}\right|=\left|\begin{array}{ccc}
1 & x & y \\
0 & y & 0 \\
0 & 0 & x
\end{array}\right|
$$

Expanding along first column, $\Delta=1\left|\begin{array}{ll}y & 0 \\ 0 & x\end{array}\right|=x y$.
Using properties of determinants in Exercises 11 to 15, prove that:
11. $\left.\begin{array}{llll}\beta & \beta^{2} & \gamma+\alpha\end{array} \right\rvert\,=(\beta-\gamma)(\gamma-\alpha)(\alpha-\beta)(\alpha+\beta+\gamma)$.

$$
\begin{array}{lll}
\gamma & \gamma^{2} & \alpha+\beta
\end{array}
$$

Sol. L.H.S. $=\left|\begin{array}{lll}\alpha & \alpha^{2} & \beta+\gamma \\ \beta & \beta^{2} & \gamma+\alpha\end{array}\right|$

$$
\gamma \quad \gamma^{2} \quad \alpha+\beta
$$

Operate $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{1}$ to make all entries of third column equal

$$
=\left|\begin{array}{lll}
\alpha & \alpha^{2} & \alpha+\beta+\gamma \\
\beta & \beta^{2} & \alpha+\beta+\gamma
\end{array}\right|
$$

Taking out $(\alpha+\beta+\gamma)$ common from C_{3},

$$
=(\alpha+\beta+\gamma)\left|\begin{array}{lll}
\alpha & \alpha^{2} & 1 \\
\beta & \beta^{2} & 1 \\
\gamma & \gamma^{2} & 1
\end{array}\right|
$$

Now each entry of one column (here third is 1), so let us operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$ to create two zeros in third column

$$
=(\alpha+\beta+\gamma)\left|\begin{array}{ccc}
\alpha & \alpha^{2} & 1 \\
\beta-\alpha & \beta^{2}-\alpha^{2} & 0 \\
\gamma-\alpha & \gamma^{2}-\alpha^{2} & 0
\end{array}\right|
$$

Expanding along third column,

$$
\begin{aligned}
& =(\alpha+\beta+\gamma)\left|\begin{array}{ll}
\beta-\alpha & \beta^{2}-\alpha^{2} \\
\gamma-\alpha & \gamma^{2}-\alpha^{2}
\end{array}\right| \\
& =(\alpha+\beta+\gamma)\left|\begin{array}{ll}
(\beta-\alpha) & (\beta-\alpha)(\beta+\alpha) \\
(\gamma-\alpha) & (\gamma-\alpha)(\gamma+\alpha)
\end{array}\right|
\end{aligned}
$$

Taking $(\beta-\alpha)$ common from R_{1} and $(\gamma-\alpha)$ common from R_{2}

$$
\begin{aligned}
& =(\alpha+\beta+\gamma)(\beta-\alpha)(\gamma-\alpha)\left|\begin{array}{ll}
1 & \beta+\alpha \\
1 & \gamma+\alpha
\end{array}\right| \\
& =(\alpha+\beta+\gamma)(\beta-\alpha)(\gamma-\alpha)(\gamma+\alpha-\beta-\alpha) \\
& =(\alpha+\beta+\gamma)(\beta-\alpha)(\gamma-\alpha)(\gamma-\beta) \\
& =(\alpha+\beta+\gamma)[-(\alpha-\beta)](\gamma-\alpha)[-(\beta-\gamma)] \\
& =(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)(\alpha+\beta+\gamma) \\
& \text { = R.H.S. } \\
& \left|\begin{array}{lll}
x & x^{2} & 1+p x^{3} \\
y & y^{2} & 1+p y^{3} \\
z & z^{2} & 1+p z^{3}
\end{array}\right|=(1+p x y z)(x-y)(y-z)(z-x) .
\end{aligned}
$$

$$
\begin{array}{lll}
x & x^{2} & 1+p x^{3}
\end{array}
$$

Sol. L.H.S. $=\left\lvert\, \begin{array}{lll}y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3}\end{array}\right.$
so we can write this determinant as sum of two determinants, the first two columns being same in both determinants)

$$
\begin{gather*}
=\left|\begin{array}{lll}
x & x^{2} & 1 \\
y & y^{2} & 1 \\
z & z^{2} & 1 \\
& \uparrow
\end{array}\right|+\left|\begin{array}{ccc}
x & x^{2} & p x^{3} \\
z & y^{2} & p y^{3} \\
z & z^{2} & p z^{3} \\
\uparrow &
\end{array}\right| \\
=\Delta_{1}+\Delta_{2} \tag{i}
\end{gather*}
$$

Now $\Delta_{2}=\left|\begin{array}{ccc}x & x^{2} & p x^{3} \\ y & y^{2} & p y^{3} \\ z & z^{2} & p z^{3}\end{array}\right|$

In an effort to make Δ_{2} similar to Δ_{1}, taking x, y, z common from $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ respectively and p common from C_{3},
$\Delta_{2}=p x y z\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$
Operate $\mathrm{C}_{1} \leftrightarrow \mathrm{C}_{3},=-p x y z\left|\begin{array}{lll}x^{2} & x & 1 \\ y^{2} & y & 1 \\ z^{2} & z & 1\end{array}\right|$
Operate $\mathrm{C}_{1} \leftrightarrow \mathrm{C}_{2}, \Delta_{2}=p x y z\left|\begin{array}{lll}x & x^{2} & 1 \\ y & y^{2} & 1 \\ z & z^{2} & 1\end{array}\right|=p x y z \Delta_{1}$

Putting this value of Δ_{2} in (i), L.H.S. $=\Delta_{1}+p x y z \Delta_{1}$

$$
\begin{equation*}
=(1+p x y z) \Delta_{1} \tag{ii}
\end{equation*}
$$

Now $\Delta_{1}=\left|\begin{array}{lll}x & x^{2} & 1 \\ y & y^{2} & 1 \\ z & z^{2} & 1\end{array}\right|$
Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$ (to create two zeros in third colump)CUET

$$
\begin{aligned}
& =\left\lvert\, \begin{array}{ccc}
x & x^{2} & 1 \\
y-x & y^{2}-x^{2} & 0 \\
z-x & z^{2}-x^{2} & 0 \\
\text { along third column }
\end{array}\right. \\
& \text { Expanding along third column }
\end{aligned}
$$

$$
\Delta_{1}=\left|\begin{array}{cc}
y-x & y^{2}-x^{2} \\
z-x & z^{2}-x^{2}
\end{array}\right|=\left|\begin{array}{cc}
(y-x) & (y-x)(y+x) \\
(z-x) & (z-x)(z+x)
\end{array}\right|
$$

Taking $(y-x)$ common from R_{1} and $(z-x)$ common from R_{2},

$$
\begin{aligned}
\Delta_{1} & =(y-x)(z-x)\left|\begin{array}{cc}
1 & y+x \\
\mathbf{1} & z+x
\end{array}\right| \\
& =(y-x)(z-x)(z+x-y-x) \\
& =(y-x)(z-x)(z-y)=-(x-y)(z-x)(-(y-z)) \\
\text { or } \quad \Delta_{1} & =(x-y)(y-z)(z-x)
\end{aligned}
$$

Putting this value of Δ_{1} in (ii),

$$
\text { L.H.S. }=(1+p x y z)(x-y)(y-z)(z-x) \quad=\text { R.H.S. }
$$

13. $\left|\begin{array}{ccc}3 a & -a+b & -a+c \\ -b+a & 3 b & -b+c \\ -c+a & -c+b & 3 c\end{array}\right|=3(a+b+c)(a b+b c+c a)$.

Sol.

$$
\text { L.H.S. }=\left|\begin{array}{ccc}
3 a & -a+b & -a+c \\
-b+a & 3 b & -b+c \\
-c+a & -c+b & 3 c
\end{array}\right|
$$

Here the sum of entries of each row is same and $=a+b+c$. So let us operate $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$

$$
\therefore \quad \text { L.H.S. }=\left|\begin{array}{ccc}
a+b+c & -a+b & -a+c \\
a+b+c & 3 b & -b+c \\
a+b+c & -c+b & 3 c
\end{array}\right|
$$

Taking out $(a+b+c)$ common from C_{1},

$$
=(a+b+c)\left|\begin{array}{ccc}
1 & -a+b & -a+c \\
1 & 3 b & -b+c \\
1 & -c+b & 3 c
\end{array}\right|
$$

Now each entry of first column is 1 . So let us operate $R_{2} \rightarrow$ $R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$ to create two zeros in first column,

$$
\text { L.H.S. }=(a+b+c)\left|\begin{array}{ccc}
1 & -a+b & -a+c \\
0 & 3 b+a-b & -b+c+a-c \\
0 & -c+b+a-b & 3 c+a-c
\end{array}\right|
$$

Expanding along first column,

$$
\begin{aligned}
& =(a+b+c) \cdot 1 \left\lvert\, \begin{array}{cc}
2 b+a & a-b \\
a-c & 2 c+a
\end{array}\right. \\
\therefore \text { L.H.S. } & =(a+b+c)[(2 b+a)(2 c+a)-(a-b)(a-c)] \\
=(a+b & +c)\left[4 b c+2 a b+2 a c+a^{2}-a^{2}+a c+a b-b c\right] \\
& =(a+b+c)(3 a b+3 b c+3 a c)
\end{aligned}
$$

$$
\begin{aligned}
& =3(a+b+c)(a b+b c+a c) \\
& =\text { R.H.S. }
\end{aligned}
$$

14. $\left|\begin{array}{ccc}1 & 1+p & 1+p+p \\ 2 & 3+2 p & 4+3 p+2 p \\ 3 & 6+3 p & 10+6 p+3 p\end{array}\right|=1$.

Sol. L.H.S. $=\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|$
On looking at $a_{11}=1$,
Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1}$ (to make entries a_{21} and a_{31} of first column as zeros)

Expanding along first column,
L.H.S. $=1\left|\begin{array}{cc}1 & 2+p \\ 3 & 7+3 p\end{array}\right|-0+0$

$$
=7+3 p-3(2+p)=7+3 p-6-3 p=1=\text { R.H.S. }
$$

15.

$$
\left|\begin{array}{ccc}
\sin \alpha & \cos \alpha & \cos (\alpha+\delta \\
\sin \beta & \cos \beta & \cos (\beta+\delta) \\
\sin \gamma & \cos \gamma & \cos (\gamma+\delta) \\
\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\
\sin \beta & \cos \beta & \cos (\beta+\delta) \\
\sin \gamma & \cos \gamma & \cos (\gamma+\delta)
\end{array}\right|=\mathbf{0}
$$

$$
\sin \alpha \quad \cos \alpha \quad \cos \alpha \cos \delta-\sin \alpha \sin \delta
$$

$$
=\left|\begin{array}{lll}
\sin \beta & \cos \beta & \cos \beta \cos \delta-\sin \beta \sin \delta \\
\sin \gamma & \cos \gamma & \cos \gamma \cos \delta-\sin \gamma \sin \delta
\end{array}\right|
$$

Operate $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+(\sin \delta) \mathrm{C}_{1}$

$$
\begin{aligned}
& =\left\lvert\, \begin{array}{ccc|ccc}
1 & 1+\mathrm{p} & 1+\mathrm{p}+\mathrm{q} & \mathrm{R}_{2}: & 2 & 3+2 p \\
0 & 1 & 2+\mathrm{p} & 2+3 p+2 q \\
0 & 3 & 7+3 \mathrm{p} & \begin{array}{c}
2 \mathrm{R}_{1}: \\
\mathrm{R}_{2}-2 \mathrm{R}_{1}: \\
0
\end{array} & \mathbf{0} & 2+2 p \\
\hline
\end{array}\right. \\
& \mathrm{R}_{3}: \quad 3 \quad 6+3 p \quad 10+6 p+3 q \\
& 3 \mathrm{R}_{1}: \quad 3 \quad 3+3 p \quad 3+3 p+3 q \\
& \mathrm{R}_{3}-3 \mathrm{R}_{1}: \quad 0 \quad 3 \quad 7+3 p
\end{aligned}
$$

$\sin \gamma \quad \cos \alpha \quad \cos \alpha \cos \delta-\sin \alpha \sin \delta+\sin \alpha \sin \delta$ $\cos \beta \quad \cos \beta \cos \delta-\sin \beta \sin \delta+\sin \beta \sin \delta$ $\cos \gamma \quad \cos \gamma \cos \delta-\sin \gamma \sin \delta+\sin \gamma \sin \delta$

$$
=\left|\begin{array}{ccc}
\sin \alpha & \cos \alpha & \cos \alpha \cos \delta \\
\sin \beta & \cos \beta & \cos \beta \cos \delta \\
\sin \gamma & \cos \gamma & \cos \gamma \cos \delta
\end{array}\right|
$$

Taking $\cos \delta$ common from C_{3}, $\sin \alpha \quad \cos \alpha \quad \cos \alpha$

$$
\begin{aligned}
& =\cos \delta\left|\begin{array}{ccc}
\sin \beta & \cos \beta & \cos \beta \\
\sin \gamma & \cos \gamma & \cos \gamma
\end{array}\right| \\
& =\cos \delta(0) \\
& =0 \\
& =\text { R.H.S. }
\end{aligned}
$$

16. Solve the system of the following equations: (Using matrices)

$$
\underline{2}+\frac{3}{y}+\frac{10}{z}=4, \frac{4}{x}-\frac{6}{y}+\frac{\underline{5}}{z}=1, \frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2 .
$$

Sol. Put $\underset{x}{\underline{1}}=u,{ }^{\boldsymbol{y}}=v,{ }^{\boldsymbol{y}}=w$.
\therefore The given equations become

$$
2 u+3 v+10 w=4,4 u-6 v+5 w=1,6 u+9 v-20 w=2
$$

The matrix form of these equations is

It is of the form $\mathrm{AX}=\mathrm{B}$

$$
\begin{aligned}
& \begin{array}{lllll}
2 & 3 & 10\rceil & \lceil u\rceil & \lceil 47
\end{array}
\end{aligned}
$$

$$
|\mathrm{A}|=\left|\begin{array}{rrr}
2 & 3 & 10 \\
4 & -6 & 5 \\
6 & 9 & -20
\end{array}\right|
$$

Expanding by first row
$=2(120-45)-3(-80-30)+10(36+36)$
$=2(75)-3(-110)+$ 1FSGSLET $\mathrm{Academy}+330+720=1200 \neq 0$
\therefore Matrix A is non-singular
$\therefore \mathrm{A}^{-1}$ exists. \therefore Unique solution is $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}$
Now let us find adj. A.
Now

$$
\begin{aligned}
& \mathrm{A}_{11}=+(120-45)=75, \mathrm{~A}_{12}=-(-80-30)=110 \\
& \mathrm{~A}_{13}=+(36+36)=72 \quad \mathrm{~A}_{21}=-(-60-90)=150 \\
& \mathrm{~A}_{22}=+(-40-60)=-100, \mathrm{~A}_{23}=-(18-18)=0 \\
& \mathrm{~A}_{31}=+(15+60)=75 \quad \mathrm{~A}_{32}=-(10-40)=30 \\
& \mathrm{~A}_{33}=+(-12-12)=-24
\end{aligned}
$$

Putting these values of $\mathrm{X}, \mathrm{A}^{-1}$ and B in (i), we have

$$
\begin{aligned}
& \lceil n\rceil \\
& \mid\rceil=\frac{1}{1200} \\
& \lfloor w\rfloor
\end{aligned} \begin{array}{lrr:}
\lceil 75 & 150 & 75\rceil \\
\mid 110 & -100 & 30 \\
\lfloor 42 & 0 & -24\rfloor \\
\lfloor 1 \\
\lfloor 2\rfloor
\end{array}
$$

$$
\left.=\frac{1}{1200} \left\lvert\, \quad \begin{array}{c}
{[300+150+150} \\
440-100+60
\end{array}\right.\right]=\frac{1}{1200 \mid}\left|\begin{array}{c}
6007 \\
400 \mid
\end{array}\right|=\left[\begin{array}{l}
\frac{1}{2} \\
\mid \underline{1}
\end{array}\right]
$$

$$
288+0-48 \quad\lfloor 240\rfloor
$$

Equating corresponding entries, $u=\frac{1}{2}, v=\frac{1}{3}, w=\frac{1}{5}$
$\therefore \frac{1}{n}=2, \underline{1}=3, \underline{1}=5$
i.e., $x=\frac{1}{\mathrm{n}}=2, y=\frac{1}{=}=3, z=\frac{1}{}=5$.

W
Choose the correct answer in Exercises 17 to 19.
17. If a, b, c, are in A.P., then the determinant

$$
\left|\begin{array}{ccc}
x+2 & x+3 & x+2 a \\
x+3 & x+4 & x+2 b \\
x+4 & x+5 & x+2 c
\end{array}\right| \text { is }
$$

(A) 0
(B) 1
(C) x
(D) $2 x$.

Sol. $\because a, b$ and c are in A.P. $\quad \therefore b-a=c-b$
Let $\quad \Delta=\left\lvert\, \begin{array}{ccc}x+2 & x+4 & x+3 \\ x+3 & \text { DSUET } \\ \text { Academy }\end{array}\right.$

$$
\begin{aligned}
& \begin{array}{lll}
\text { 「 } 75 & 110 & 727^{\prime}
\end{array} \begin{array}{llll}
75 & 150 & 757
\end{array} \\
& \therefore \text { adj. } A=\left|\begin{array}{lll}
150 & -100 & 0
\end{array}\right|=\left|\begin{array}{lll}
110 & -100 & 30
\end{array}\right| \\
& \begin{array}{lll}
l \\
75 & 30 & -24\rfloor
\end{array} \begin{array}{llll}
72 & 0 & -24 \\
\hline
\end{array} \\
& \therefore \quad \mathrm{~A}^{-1}=\frac{\mathrm{adj} . \mathrm{A}}{\mathrm{IAI}}=\frac{1}{1200}\left[\left.\begin{array}{rrr}
75 & 150 & 75 \\
110 & -100 & 30
\end{array} \right\rvert\,\right. \\
& \left.\begin{array}{lll}
\\
72 & 0 & -24
\end{array}\right]
\end{aligned}
$$

$x+5$

$$
\begin{aligned}
& \mathrm{x} \\
& + \\
& 2 \\
& \mathrm{a} \\
& \mathrm{x} \\
& + \\
& 2 \\
& \mathrm{~b} \\
& \mathrm{x} \\
& + \\
& 2 \\
& \mathrm{c}
\end{aligned}
$$

Operating $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}$, [By looking at (i)], we have

$$
\Delta=\left|\begin{array}{ccc}
x+2 & x+3 & x+2 a \\
1 & 1 & 2(b-a) \\
1 & 1 & 2(c-b)
\end{array}\right|
$$

Putting $c-b=b-a$ from (i), $\Delta=\left|\begin{array}{cccc}x+2 & x+3 & x+2 a \\ 1 & 1 & 2(b-a) \\ 1 & 1 & 2(b-a)\end{array}\right|$

$$
=0
$$

$\left(\because \mathrm{R}_{2}\right.$ and R_{3} are identical)

Alternative Method

Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{3}-2 \mathrm{R}_{2}$.
18. If x, y, z are non zero real numbers, then the inverse of matrix $A=\left[\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]$ is
(A) $\left|\begin{array}{ccc}x^{-1} & 0 & 0 \\ 0 & y^{-\mathbf{1}} & 0\end{array}\right|$
$\left|\begin{array}{lll}0 & 0 & z^{-1}\end{array}\right|$
(C) $1 \begin{array}{lll}1 & \left.\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0\end{array}\right]\end{array}$
$x y z$

(B) $x y z \quad 0 \quad y^{-1} \quad 0$
$0 \quad 0 \quad z^{-1} \mid$
(D) $1 \begin{array}{lll}1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0}\end{array}$.
$x y z$

Sol. Given: Matrix $\mathrm{A}=\left\lvert\, \begin{array}{lll}\mathrm{o} & \text { y }\end{array}\right.$

$$
\left\lfloor\begin{array}{lll}
& & \\
0 & 0 & z
\end{array}\right\rfloor
$$

$$
|\mathrm{A}|=\left|\begin{array}{lll}
x & 0 & 0 \\
0 & y & 0
\end{array}\right|
$$

Expanding along first row,

$$
|\mathrm{A}|=x(y z-0)-0+0=x y z \neq 0
$$

$(\because$ It is given that x, y, z are non-zero real numbers)
$\therefore \quad A^{-1}$ exists and $A^{-1}=\frac{1}{|A|}$ adj. A

To find adj. A
$\mathrm{A}_{11}=+\left|\begin{array}{cc}y & \mathrm{o} \\ \mathrm{o} & { }_{z}\end{array}\right|=y z, \quad \mathrm{~A}_{12} \quad\left|\begin{array}{ll}0 & 0 \\ 0 & z\end{array}\right|=-(0-0)=0$,
$\mathrm{A}=+\left\lvert\, \begin{array}{ll}\mathrm{O} & y \\ & =0-0=0, \mathrm{~A} \\ \text { OUET }\end{array}=-\quad \begin{aligned} & 0 \\ & 0\end{aligned}=-(0-0)=0\right.$,
$\mathrm{A}_{22}^{13}=+\left|\begin{array}{cc}0 & 0 \\ 0 & 0 \\ 0 & Z\end{array}\right|=x z$,
$21 \quad\left|\begin{array}{ll}0 & z\end{array}\right|$

$$
\mathrm{A}=+\left|\begin{array}{ccc}
0 & 0 \\
y & 0 & 0
\end{array}\right|=(0-0)=0, \quad \mathrm{~A}=-\left|\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right|=-(0-0)=0
$$

$$
\mathrm{A}_{33}=+\left|\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right|=x y .
$$

$\therefore \quad$ adj. $A=\left[\begin{array}{rrr}y x & 0 & 0 \\ 0 & \mathrm{xx} & 0 \\ 0 & 0 & \mathrm{xy}\end{array}\right]^{\prime}=\left[\left.\begin{array}{rrr}\mathrm{yx} & 0 & 0 \\ 0 & \mathrm{xx} & 0\end{array} \right\rvert\,\right.$
Putting values in eqn. (i), $\mathrm{A}^{-1}=\frac{1}{\mathrm{xyx}} \left\lvert\, \begin{array}{ccc}{\left[\left.\begin{array}{ccc}y x & 0 & 0 \\ 0 & x x & 0\end{array} \right\rvert\,\right.} \\ \left\lfloor\begin{array}{lll}0 & 0 & x y\end{array}\right]\end{array}\right.$

$$
\begin{aligned}
& \left\lceil\frac{\mathrm{yx}}{\mathrm{xyx}}\right. \\
= & 0 \\
= & 0
\end{aligned}\left|\begin{array}{ccc}
\frac{1}{x} & 0 & 0
\end{array}\right|
$$

\therefore Option (A) is the correct answer.
Remark. The answer of this Q. No. 18 should be used as a formula for one mark questions and Entrance
Examinations.
For example, inverse matrix of diagonal matrix
$\lceil 2$ 0 07
$\left\lceil\begin{array}{lll}\frac{1}{2} & 0 & 0\end{array}\right\rceil$
$\left\lfloor\left.\begin{array}{ccc}0 & 3 & 0 \\ 0 & 0 & 5\end{array} \right\rvert\,\right.$ is diagonal matrix $\left|\begin{array}{lll}0 & \frac{1}{3} & 0 \\ 3 & 1\end{array}\right|$.

$$
\left\lfloor\begin{array}{lll}
0 & 0 & \\
& & 5
\end{array}\right\rfloor
$$

19. Let $\mathbf{A}=\left[\left.\begin{array}{ccc}\begin{array}{c}1 \\ \sin \theta\end{array} & \sin \theta & 1 \\ \mid & \sin \theta\end{array} \right\rvert\,\right.$, where $\mathbf{0} \leq \theta \leq 2 \pi$. Then
(A) $\operatorname{Det}(A)=0$
(B) $\operatorname{Det}(A) \in(2, \infty)$
(C) $\operatorname{Det}(A) \in(2,4)$
(D) $\operatorname{Det}(A) \in[2,4]$.

Sol. Given: Matrix $A=\left[\left.\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta\end{array} \right\rvert\,\right.$
$\left[\left.\begin{array}{lll}\mid-1 & -\sin \theta & 1\end{array} \right\rvert\,\right.$
$\therefore \quad|\mathrm{A}|=\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right|$
Expanding along first row
$\operatorname{det} \mathrm{A}$ i.e., $|\mathrm{A}|=1\left(1+\sin ^{2} \theta\right)-\sin \theta$

$$
(-\sin \theta+\sin \theta)+1\left(\sin ^{2} \theta+1\right)
$$

$$
\begin{equation*}
=1+\sin ^{2} \theta+1+\sin ^{2} \theta=2+2 \sin ^{2} \theta \tag{i}
\end{equation*}
$$

We know that $-1 \leq \sin \theta \leq 1$
$\therefore \quad 0 \leq \sin ^{2} \theta \leq 1$
$\left(\because \sin ^{2} \theta\right.$ can never be negative)
Multiplying by $2,0 \leq 2 \sin ^{2} \theta \leq 2$
Adding 2 to all sides $2 \leq 2+2 \sin ^{2} \theta \leq 4$
i.e.,

$$
\begin{equation*}
2 \leq \operatorname{det} . \mathrm{A} \leq 4 \tag{i}
\end{equation*}
$$

\therefore (Value of) $\operatorname{det} A \in$ closed interval [2, 4].
Therefore option (D) is correct answer.

