Exercise 3.1

1. In the matrix A =
$$\begin{vmatrix} 2 & 5 & 19 & -7 \\ 35 & -2 & 5/2 & 12 \\ \sqrt{3} & 1 & -5 & 17 \\ \sqrt{3} & 3 & 3 & 3 \\ 35 & -2 & 5/2 & 12 \\ 35 & -2 & -2 & 5/2 \\ 35 & -2 & -2 & 5/2 \\ 35 & -2 & -2 & -2 \\ 35 &$$

- (i) The order of the matrix (ii) The number of elements
- (*iii*) Write the elements a_{13} , a_{21} , a_{33} , a_{24} , a_{23} .
- **Sol.** (*i*) There are 3 horizontal lines (rows) and 4 vertical lines (columns) in the given matrix A.
 - \therefore Order of the matrix A is 3 × 4.
 - (ii) The number of elements in this matrix A is $3 \times 4 = 12$.
 - (:: The number of elements in a $m \times n$ matrix is $m \cdot n$)

(iii)
$$a_{13} \Rightarrow$$
 Element in first row and third column = 19

- $a_{21} \Rightarrow$ Element in second row and first column = 35
- $a_{33} \Rightarrow$ Element in third row and third column = -5
- $a_{24} \Rightarrow$ Element in second row and fourth column = 12

 $a_{23} \Rightarrow$ Element in second row and third column = $\frac{5}{2}$.

2. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?

Sol. We know that a matrix having mn elements is of order $m \times n$.

(*i*) Now $24 = 1 \times 24$, 2×12 , 3×8 , 4×6 and hence

= 24×1 , 12×2 , 8×3 , 6×4 also.

- $\therefore \text{ There are 8 possible matrices having 24 elements of orders} 1 \times 24, 2 \times 12, 3 \times 8, 4 \times 6, 24 \times 1, 12 \times 2, 8 \times 3, 6 \times 4.$
- (*ii*) Again (prime number) $13 = 1 \times 13$ and 13×1 only.
 - :. There are 2 possible matrices of order 1 × 13 (Row matrix) and 13 × 1 (Column matrix)
- 3. If a matrix has 18 elements, what are the possible orders it can have? What if has 5 elements?

Sol. We know that a matrix having mn elements is of order $m \times n$.

(*i*) Now $18 = 1 \times 18$, 2×9 , 3×6 and hence 18×1 , 9×2 , 6×3 also.

: There are 6 possible matrices having 18 elements of orders 1×18 , 2×9 , 3×6 , 18×1 , 9×2 and 6×3 . (*ii*) Again (Prime number) $5 = 1 \times 5$ and 5×1 only. \therefore There are 2 possible matrices of order 1 × 5 and 5 × 1. 4. Construct a 2 × 2 matrix A = $[a_{ij}]$ whose elements are given by: (i) $a_{ij} = \frac{(i+j)^2}{2}$ (ii) $a_{ij} = \frac{i}{2}$ (iii) $a_{ij} = \frac{(i+2j)^2}{2}$ **Sol.** To construct a 2 × 2 matrix A = $[a_{ii}]$ (i) **Given:** $a_{ij} = \frac{(i+j)^2}{2}$...(i) In (i), Put $i = 1, j = 1, \quad \therefore \quad a_{11} = \frac{(1+1)^2}{2} = \frac{2^2}{2} = \frac{4}{2} = 2$ Put i = 1, j = 2, \therefore $a_{12} = \frac{(1+2)^2}{2} = \frac{3^2}{2} = \frac{9}{2}$ Put i = 2, j = 1; \therefore $a_{21} = \frac{(2+1)^2}{2} = \frac{9}{2}$ Put i = 2, j = 2; \therefore $a_{22} = \frac{(2+2)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8$ $\therefore \quad \mathbf{A}_{2 \times 2} = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21}^{11} & a_{22}^{12} \end{bmatrix} = \begin{bmatrix} 2 & \mathbf{Q} \\ \mathbf{Q} & \mathbf{Q} \end{bmatrix}$ 2 8 (ii) **Given:** $a_{ij} = \frac{1}{i}$...(i) In (i). Put $i = 1, j = 1, \quad \therefore \quad a_{11} = \frac{1}{1} = 1$ Put $i = 1, j = 2, \qquad \therefore \qquad a_{12} = \frac{1}{2}$ Put i = 2, j = 1; \therefore $a_{21} = \frac{2}{1} = 2$ Put i = 2, j = 2; \therefore $a_{22} = \frac{2}{2} = 1$ $\begin{bmatrix} a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $\therefore A_{2 \times 2} = \begin{bmatrix} a \end{bmatrix} \begin{bmatrix} CUET = 1 & 2 \\ CUET = 1 & 2 \end{bmatrix}$

Put
$$i = 1, j = 1;$$
 $\therefore a_{11} = \frac{(1+2)^2}{2} = \frac{3^2}{2} = \frac{9}{2}$
Put $i = 1, j = 2;$ $\therefore a_{12} = \frac{(1+4)^2}{2} = \frac{5^2}{2} = \frac{25}{2}$
Put $i = 2, j = 1;$ $\therefore a_{21} = \frac{(2+2)^2}{2} = \frac{16}{2} = 8$
Put $i = 2, j = 2;$ $\therefore a = \frac{(2+4)^2}{2} = \frac{6^2}{2} = \frac{36}{2} = 18$
 $\therefore A_{2 \times 2} = [a_{ij}] = \begin{vmatrix} a & a \\ 21 & 22 \end{vmatrix} = \begin{vmatrix} 2 & 2 \\ 2 & 1 \end{vmatrix}$
5. Construct a 3 × 4 matrix, whose elements are given by:
(i) $a_{ij} = \frac{1}{2} | -3i + j |$ (ii) $a_{ij} = 2i - j.$
Sol. (i) To construct a 3 × 4 matrix say A.
Given: $a_{ij} = \frac{1}{2} - 3i + j |$...(i)
In (i),
Put $i = 1, j = 1,$
 $\therefore a_{12} = \frac{1}{2} | -3 + 2 | = \frac{1}{2} | -2 | = \frac{1}{2} (2) = 1$
Put $i = 1, j = 2,$
 $\therefore a_{12} = \frac{1}{2} | -3 + 3 | = \frac{1}{2} | 0 | = \frac{1}{2} (0) = 0$
 $i = 1, j = 3,$
 $\therefore a_{13} = \frac{1}{2} | -3 + 4 | = \frac{1}{2} | 1 | = \frac{1}{2} (1) = \frac{1}{2}$
 $i = 1, j = 4,$
 $\therefore a_{14} = \frac{1}{2} | -3 + 4 | = \frac{1}{2} | 1 | = \frac{1}{2} (1) = \frac{1}{2}$
 $i = 2, j = 1,$
 $\therefore a_{21} = \frac{1}{2} | -3 + 4 | = \frac{1}{2} | 1 | = \frac{1}{2} | 0 = 0$
 $i = 2, j = 2,$
 $\therefore a_{22} = \frac{1}{2} | 0 = 0$
 $i = 2, j = 2,$
 $\therefore a_{22} = \frac{1}{2} | 0 = 0$
 $i = 2, j = 2,$
 $\therefore a_{22} = \frac{1}{2} | 0 = 0$
 $i = 2, j = 2,$
 $\therefore a_{22} = \frac{1}{2} | 0 = 0$
 $i = 2, j = 2,$
 $\therefore a_{22} = \frac{1}{2} | 0 = 0$

i = 3, j = 1, $\therefore \quad a_{31} = \frac{1}{2} |-9+1| = \frac{1}{2} |-8| = \frac{8}{2} = 4$ i = 3, j = 2, $\therefore \quad a_{32} = \frac{1}{2} | -9 + 2 | = \frac{1}{2} | -7 | = \frac{7}{2}$ i = 3, j = 3,∴ $a_{33} = \frac{1}{2} | -9 + 3 | = \frac{1}{2} | -6 | = \frac{6}{2} = 3$ i = 3, j = 4,∴ $a_{34} = \frac{1}{2} | -9 + 4 | = \frac{1}{2} | -5 | = \frac{5}{2}$ $\begin{bmatrix} a & a & a \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$ $\therefore A_{3 \times 4} = \begin{vmatrix} 11 & 12 & 13 & 14 \\ a_{21} & a_{22} & a_{23} & a_{24} \end{vmatrix} = \begin{vmatrix} 5 & 3 \\ 2 & 1 \end{vmatrix}$ $\begin{bmatrix} a_{21} & a_{22} & 2_{3} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 4 & 7 & 3 \end{bmatrix}$ 2 2 (ii) Given: $a_{ii} = 2i - j$ $a_{12} = 2 - 2 = 0$ $\therefore a_{11} = 2 - 1 = 1,$ $a_{13} = 2 - 3 = -1,$ $a_{14} = 2 - 4 = -2$ $a_{22} = 4 - 2 = 2$ $a_{21} = 4 - 1 = 3,$ $a_{24} = 4 - 4 = 0$ $a_{23} = 4 - 3 = 1$ $a_{32} = 6 - 2 = 4$ $a_{31} = 6 - 1 = 5,$ $a_{33} = 6 - 3 = 3,$ $\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \end{bmatrix} = 6 - 4 = 2$ $\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \end{bmatrix} = \begin{bmatrix} a_{14} & a_{15} & a_{15} \end{bmatrix}$ $\therefore A_{3\times 4} = \begin{bmatrix} a_{21} & a_{22} & a_{23} & a_{24} \end{bmatrix} = \begin{bmatrix} 3 & 2 & 1 & 0 \end{bmatrix}.$ $\begin{vmatrix} a_{31} & a_{32} & a_{33} & a_{34} \end{vmatrix} \begin{vmatrix} b & b \\ b & b & b \end{vmatrix}$ 2

6. Find the values of x, y and z from the following equations:

(ئ) [[] 4	3] _ [y	z		х т у			
(¹)	3	1	5		5+ <i>z</i>	xy	5	8
L	JL			l	_		L	
	+ y + z]							
(iii) 	x + z	=	D SAc	JET ade	my			

Chapter 3 - Matrices

Equating corresponding entries, we have x + y = 6...(i) 5 + z = 5 *i.e.*, z = 5 - 5 = 0...(ii) and xy = 8Let us solve (i) and (ii) for x and y. From (i), y = 6 - xPutting this value of y in (ii), we have x(6 - x) = 8 or $6x - x^2 = 8$ $-x^{2} + 6x - 8 = 0$ or $x^{2} - 6x + 8 = 0$ or $x^{2} - 4x - 2x + 8 = 0$ or x(x - 4) - 2(x - 4) = 0or (x-4)(x-2) = 0or Either x - 4 = 0 or x - 2 = 0*i.e.*, x = 4 or x = 2. When x = 4, then y = 6 - x = 6 - 4 = 2 $\therefore x = 4, y = 2, z = 0.$ When x = 2, then y = 6 - x = 6 - 2 = 4x = 2, y = 4, z = 0. $\begin{bmatrix} x + y + z \\ x + z \end{bmatrix}$ (iii) Given: v + zEquating corresponding entries, we have x + y + z = 9...(i) x + z = 5...(ii) y + z = 7...(*iii*) Eqn. (i) – eqn. (ii) gives y = 9 - 5 = 4Eqn. (i) – eqn. (iii) gives x = 9 - 7 = 2Putting x = 2 and y = 4 in (i), 2 + 4 + z = 96 + z = 9or *.*.. z = 3Hence x = 2, y = 4, z = 3.7. Find the values of *a*, *b*, *c* and *d* from the equation $\begin{bmatrix} a-b & 2a+c \end{bmatrix} = \begin{bmatrix} -1 \end{bmatrix}$ 5 13[†] $\begin{vmatrix} 2a-b & 3c+d \end{vmatrix}$ 0 **Sol.** Equating corresponding entries of given equal matrices, we have a - b = -1...(i) 2a - b = 0...(ii) 2a + c = 5...(iii) and 3c + d = 13...(iv) Eqn. (i) – eqn. (ii) gives – a = -1 or a = 1Putting a = 1 in (i), 1 - b = -1 or -b = -2 or b = 2Putting a = 1 in (iii), $a = \overline{C} \overline{D} \overline{E} \overline{T}$ c = 5 - 2 = 3**Academv** = 13 - 9 = 4Putting c = 3 in (iv),

8. A = $[a_{ij}]_{m \times n}$ is a square matrix, if (A) m < n (B) m > n (C) m = n (D) None of these.

Sol. (C) is the correct option.

- (: By definition of square matrix m = n)
- 9. Which of the given values of *x* and *y* make the following pair of matrices equal

pair of interfect equal

$$\begin{bmatrix} 3x+7 & 5 \\ y+1 & 2-3x^{1}, \\ 8 & 4 \end{bmatrix}$$

$$\begin{bmatrix} (A) x = \frac{-1}{3}, y = 7 \\ (B) \text{ Not possible to find} \\ (C) y = 7, x = \frac{-2}{3} \\ (D) x = \frac{-1}{3}, y = \frac{-2}{3}.$$
Sol. According to given, matrix $\begin{bmatrix} 3x+7 & 5 \\ y+1 & 2-3x \end{bmatrix} = \text{matrix} \begin{bmatrix} 0 & y-2 \\ y+1 & 2-3x \end{bmatrix}$

$$\begin{bmatrix} 8 & 4 \\ y \end{bmatrix}$$
Equating corresponding entries, we have
 $3x + 7 = 0 \implies 3x = -7 \implies x = -\frac{7}{3} \qquad \dots(i)$

$$5 = y - 2 \implies 5 + 2 = y \implies y = 7$$

$$y + 1 = 8 \implies y = 8 - 1 = 7$$
and $2 - 3x = 4 \implies -3x = 2 \implies x = -\frac{2}{3} \qquad \dots(ii)$
The two values of $x = -\frac{7}{3}$ given by (i) and $x = -\frac{2}{3}$ given by (ii)
are not equal.
∴ No values of x and y exist to make the two matrices equal.
∴ Option (B) is the correct answer.

10. The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is:

a₁₃

(A) 27 (B) 18 (C) 81 (D) 512. Sol. We know that general matrix of order 3 × 3 is

> a₁₂ a₂₂

 $a_{_{11}}$

 $\begin{bmatrix} a_{31} & a_{32} & a_{33} \end{bmatrix}$ This matrix has $3 \times 3 = 9$ elements. The number of choices for a_{11} is 2 (as 0 or 1 can be used) Similarly, the number of choices for each other element is 2.

Chapter 3 - Matrices

Hence, total possible arrangements (matrices)

 $= \frac{2 \times 2 \times ... \times 2}{9 \text{ times}}$ (By fundamental principle of counting)

= $2^9 = 512$ \therefore Option (D) is the correct answer.

Class 12

Exercise 3.2 1. Let $A = \begin{bmatrix} 2 & 4 \\ & , B = \begin{bmatrix} 1 & 3 \\ & -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 & 5 \\ & 3 & 4 \end{bmatrix}$ Find each of the following: (*ii*) A - B (*iii*) 3A - C (v) BA. (i) A + B (iv) AB (*i*) A + B = $\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$ + $\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$ = $\begin{bmatrix} 2+1 & 4+3 \\ 3-2 & 2+5 \end{bmatrix}$ = $\begin{bmatrix} 3 & 7 \\ 1 & 7 \end{bmatrix}$ Sol. (ii) $A - B = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} 2 - 1 & 4 - 3 \\ 3 + 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 5 & -3 \end{bmatrix}$ (iii) $3A - C = 3\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} - C = \begin{bmatrix} 3 \times 2 & 3 \times 4 \\ 3 \times 3 & 3 \times 2 \end{bmatrix} - C$ $= \begin{bmatrix} 6 & 12 \\ 9 & 6 \end{bmatrix} \begin{bmatrix} 1-2 & 5 \\ 9-3 & 6-4 \end{bmatrix} = \begin{bmatrix} 8 & 7 \\ 9-3 & 6-4 \end{bmatrix} \begin{bmatrix} 8 & 7 \\ 6 & 2 \end{bmatrix}$ (iv) AB = $\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$ Performing row by column multiplication Performing row by column multiplication, $\begin{bmatrix} 2(1) + 4(-2) & 2(3) + 4(5) \\ 3(1) + 2(-2) & 3(3) + 2(5) \end{bmatrix} \begin{bmatrix} 2 - 8 & 6 + 20 \\ 3 - 4 & 9 + 10 \end{bmatrix} = \begin{bmatrix} -6 & 26 \\ -1 & 19 \end{bmatrix}$ BA = $\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$ (v)Performing row by column multiplication,

 $=\begin{bmatrix}1(2)+3(3) & 1(4)+3(2) \\ (-2)2+5(3) & (-2)(4)+5(2) \end{bmatrix} \begin{bmatrix}2+9 & 4+6 \\ -4+15 & -8+10 \end{bmatrix} = \begin{bmatrix}11 & 10 \\ 11 & 2 \end{bmatrix}$

Note. From solutions of part (iv) and (v), we can easily observe that AB need not be equal to BA *i.e.*, matrix multiplication need not be commutative.

2. Compute the following:

(i)
$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix} + \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
$$\begin{bmatrix} a^2 + b^2 & b^2 + c^2 \end{bmatrix} \begin{bmatrix} 2ab & 2bc \end{bmatrix}$$
(ii)
$$\begin{bmatrix} b & c \\ c & c \\$$

Class 12 Chapter 3 - Matrices **4**] [1 **[**2 3 5] 3 4 5 3 0 2 4 5 6 4 3 0 5 $\begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -1 & 3 \end{bmatrix} \begin{bmatrix} 2 & -3 \end{bmatrix}$ (v) $\begin{vmatrix} 3 & 2 \end{vmatrix}$ | (vi) | $\begin{vmatrix} 1 & 0 \end{vmatrix}$ $\begin{vmatrix} -1 & 1 \end{vmatrix} \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 2 \end{bmatrix} \begin{vmatrix} 3 \end{vmatrix}$ **Sol.** (i) $\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} a & -b \end{bmatrix}$ is defined because the pre-matrix has 1 $\begin{vmatrix} -b & a \end{vmatrix} \begin{vmatrix} b & a \end{vmatrix}$ 2 columns which is equal to the number of rows of thepostmatrix. Performing row by column multiplication, $= \begin{bmatrix} a(a) + b(b) & a(-b) + b(a) & | & | & a^2 + b^2 \\ | (-b)a + a(b) & (-b)(-b) + a(a) \end{bmatrix} = \begin{bmatrix} a^2 + b^2 & 0 & | & | \\ | & | & 0 & b^2 + a^2 \end{bmatrix}$ cademy

(*ii*)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_{3 \times 1}$$
 [2 3 4]_{1 × 3} is defined because the pre-matrix has

one column which is equal to the number of rows of the post-matrix. Performing row by column multiplication,

$$= \begin{bmatrix} 1(2) & 1(3) & 1(4) \\ 2(2) & 2(3) & 2(4) \\ 3(2) & 3(3) & 3(4) \end{bmatrix} = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 6 & 8 \\ 6 & 9 & 12 \end{bmatrix}_{3 \times 3}$$

$$(iii) \begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$

=

 $= \begin{bmatrix} 1(1) + (-2)2 & 1(2) + (-2)3 & 1(3) + (-2)1 \\ 2(1) + 3(2) & 2(2) + 3(3) & 2(3) + 3(1) \end{bmatrix}$ (Row by column multiplication)

$$\begin{vmatrix} 1-4 & 2-6 & 3-2 \\ 2+6 & 4+9 & 6+3 \end{vmatrix} = \begin{vmatrix} -3 & -4 & 1 \\ 8 & 13 & 9 \end{vmatrix}$$

$$\begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5 \\ 0 & 2 & 4 \end{bmatrix}$$
 (*iv*)
$$\begin{bmatrix} 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 2(1)+3(0)+4(3) & 2(-3)+3(2)+4(0) & 2(5)+3(4)+4(5) \\ 3(1)+4(0)+5(3) & 3(-3)+4(2)+5(0) & 3(5)+4(4)+5(5) \\ 4(1)+5(0)+6(3) & 4(-3)+5(2)+6(0) & 4(5)+5(4)+6(5) \end{bmatrix}$$

$$= \begin{bmatrix} 2+0+12 & -6+6+0 & 10+12+20 \\ 3+0+15 & -9+8+0 & 15+16+25 \end{bmatrix} = \begin{bmatrix} 18 & -1 & 56 \\ 18 & -1 & 56 \end{bmatrix}$$

$$= \begin{bmatrix} 2+10+18 & -12+10+0 & 20+20+30 \end{bmatrix} = \begin{bmatrix} 18 & -1 & 56 \\ 18 & -1 & 56 \end{bmatrix}$$

$$= \begin{bmatrix} 2+110+18 & -12+10+0 & 20+20+30 \end{bmatrix} = \begin{bmatrix} 18 & -1 & 56 \\ 18 & -1 & 56 \end{bmatrix}$$

 $\begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$ has 2 columns which is equal to the number of rows of the post-matrix.

Performing row by column multiplication,

$$= \begin{bmatrix} 2(1) + 1(-1) & 2(0) + 1(2) & 2(1) + 1(1) \\ 3(1) + 2(-1) & 3(1) + 2(1) \\ Academy \end{bmatrix}$$

Class 12

$$\begin{bmatrix} 3 & -1 & 3 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 6 - 1 + 9 & -9 - 0 + 3 \\ -1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 \end{bmatrix} \begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 \end{bmatrix} \begin{bmatrix} -2 + 0 + 6 & 3 + 0 + 2 \end{bmatrix}$$
(Row by column multiplication)

$$= \begin{bmatrix} 14 & -6 \\ 1 & 5 \end{bmatrix}$$
4. If $A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix} \text{ and } C = \begin{bmatrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{bmatrix}$
then compute $(A + B)$ and $(B - C)$. Also, verify that
 $A + (B - C) = (A + B) - C$.
Sol. $A + B = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 + 3 & 2 - 1 & -3 + 2 \\ 5 + 4 & 0 + 2 & 2 + 5 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ 3 & -1 & 2 \\ 1 & -2 & -1 + 0 \end{bmatrix} + 3$
 $\Rightarrow A + B = \begin{bmatrix} 4 & 1 & -1 \\ 9 & 2 & 7 \\ 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 + 3 & 2 - 1 & -3 + 2 \\ 5 + 4 & 0 + 2 & 2 + 5 \\ 1 & -1 & -1 \end{bmatrix} = A + B = \begin{bmatrix} 3 - 4 & -1 - 1 & 2 - 2 \\ 4 - 0 & 2 - 3 & 5 - 2 \\ 2 - 1 & 0 + 2 & 3 - 3 \end{bmatrix}$
 $\Rightarrow B - C = \begin{bmatrix} -1 & -2 & 0 \\ 4 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 3 - 4 & -1 - 1 & 2 - 2 \\ 4 - 0 & 2 - 3 & 5 - 2 \\ 2 - 1 & 0 + 2 & 3 - 3 \end{bmatrix}$
 $\Rightarrow B - C = \begin{bmatrix} -1 & -2 & 0 \\ 4 & -1 & 3 \end{bmatrix} = A + (B - C)$
 $\begin{bmatrix} 1 & 2 & 0 \\ 4 & -1 & 3 \end{bmatrix} = A + (B - C)$
 $\begin{bmatrix} 1 & 2 & -3 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -1 & -2 & 0 \end{bmatrix}$
Putting the value of $(B - C)$ from (*ii*) in L.H.S.
 $= A + (B - C)$
 $\begin{bmatrix} 1 & 2 & -3 \\ -3 & -1 & -2 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -3 & -2 & -3 \\ -4 & -1 & 3 \\ -5 & 0 & 2 \end{bmatrix} + \begin{bmatrix} 4 & 4 & -1 & 3 \\ -5 & 0 & 2 \end{bmatrix} + \begin{bmatrix} 4 & -1 & 3 \\ -5 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 & 2 \end{bmatrix} + \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ -5 & 0 \end{bmatrix} = \begin{bmatrix}$

Chapter 3 - Matrices

 $\begin{bmatrix} 4-4 & 1-1 & -1-2 \end{bmatrix} \begin{bmatrix} 0 & 0 & -3 \end{bmatrix}$ $\begin{vmatrix} 9 - 0 & 2 - 3 & 7 - 2 \end{vmatrix} = \begin{vmatrix} 9 & -1 & 5 \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 3 - 1 & -1 + 2 & 4 - 3 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 1 \end{vmatrix}$...(iv) From (iii) and (iv), we have L.H.S. = R.H.S. $\begin{bmatrix} 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}$ 3 3 5 5 5. If $A = \begin{vmatrix} \frac{1}{2} & \frac{2}{4} \\ \frac{3}{7} & \frac{3}{2} \end{vmatrix}$ and $B = \begin{vmatrix} \frac{1}{2} & \frac{2}{4} \\ \frac{5}{7} & \frac{5}{6} & \frac{5}{2} \end{vmatrix}$, then compute 3A - 5B. $\begin{vmatrix} 3 & 3 & -5 & 5 & 5 \\ 1 & 2 & 4 & 1 & 2 & 4 \\ \hline 3 & 3 & 3 & 5 & 5 & 2 \\ 7 & 2 & 2 & 2 & 2 & 2 \\ \hline 1 & 2 & 4 & 5 & 5 & 2 \\ 7 & 2 & 2 & 2 & 2 & 2 \\ \hline 1 & 2 & 4 & 5 & 5 & 2 \\ 7 & 2 & 2 & 2 & 2 & 2 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 & 5 \\ \hline 1 & 2 & 4 & 5 \\ \hline 1 & 2 & 4 & 5 \\ \hline 1 & 2 & 4 & 5 \\ \hline 1 & 2 & 5 \\$ Sol. 2 5 5 5 3 3 Multiplying each entry of first matrix by 3 and each entry of second matrix by 5 $\begin{bmatrix} 2 & 3 & 5 \end{bmatrix} \begin{bmatrix} 2 & 3 & 5 \end{bmatrix} \begin{bmatrix} 2-2 & 3-3 & 5-5 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ $= \begin{vmatrix} 1 & 2 & 4 \end{vmatrix} - \begin{vmatrix} 1 & 2 & 4 \end{vmatrix} = \begin{vmatrix} 1 - 1 & 2 - 2 & 4 - 4 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 \end{vmatrix}$ Remark. Here answer is a zero matrix. **Remark.** Here answer is a zero matrix. **6.** Simplify $\cos \theta$ $\sin \theta$ **Sol.** $\cos \theta \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} + \sin \theta \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix}$ Multiplying each entry of first matrix by $\cos \theta$ and each entry of second matrix by $\sin \theta$ Academy

7. Find X and Y if (i) $X + Y = \begin{bmatrix} 7 & 0 \\ 2 & \end{vmatrix}$ and $X - Y = \begin{bmatrix} 3 & 0 \\ 0 & \end{vmatrix}$ (*ii*) $2X + 3Y = \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$ and $3X + 2Y = \begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix}$ **Sol.** (*i*) **Given:** $X + Y = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}$... (i) and $X - Y = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$... (ii) Adding eqns. (i) and (ii), we have $2X = \begin{bmatrix} 7 & 0 \end{bmatrix}_{+} \begin{bmatrix} 3 & 0 \end{bmatrix}_{-} \begin{bmatrix} 7+3 & 0+0 \end{bmatrix}_{-} \begin{bmatrix} 10 & 0 \end{bmatrix}$ 2 5 0 3 2+0 5+3 2 8 $X = \frac{1}{2} \begin{bmatrix} 10 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{10}{2} & \frac{10}{2} \\ \frac{2}{2} & \frac{8}{2} \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix}.$ Eqn. (i) - eqn. (ii) gives $2Y = \begin{bmatrix} 7 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 \end{bmatrix} \begin{bmatrix} 7 - 3 & 0 - 0 \end{bmatrix} \begin{bmatrix} 4 & 0 \end{bmatrix}$ 2 5 0 3 2-0 5-3 2 2 (*ii*) **Given:** $2X + 3Y = \begin{vmatrix} 2 & 3 \\ |4 & 0 \end{vmatrix}$... (j) $3X + 2Y = \begin{bmatrix} -2 & -2 \\ | & 5 \end{bmatrix}$ and ... (ii) Multiplying equation (i) by 2, we have ... (iii) 0

Chapter 3 - Matrices

 $\therefore X = \frac{1}{5} \begin{bmatrix} 2 & -12 \end{bmatrix} \begin{bmatrix} 2 & -12 \\ -12 \end{bmatrix} = \begin{bmatrix} 2 & -12 \\ -12 \end{bmatrix}$ Now from equation (i), $3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} - 2X$ $\begin{bmatrix} \underline{2} & \underline{-12} \end{bmatrix}$ $\begin{bmatrix} \underline{4} & \underline{-24} \end{bmatrix}$ $\begin{bmatrix} 2 & 3 \\ -2 & 5 \\ -1 & -2 \\ -11 & 3 \\ -11 & 3 \\ -11 & 3 \\ -11 & -11 \\ -11 & -22 \\ -11 & -22 \\ -11 & -22 \\ -22$ $= \begin{vmatrix} 2 - \frac{4}{5} & 3 + \frac{24}{5} \end{vmatrix} = \begin{bmatrix} \frac{6}{5} & \frac{39}{5} \end{bmatrix}$ $\begin{vmatrix} 4 + \frac{22}{5} & 0 & -6 \end{vmatrix} \begin{vmatrix} \frac{42}{5} & -6 \end{vmatrix}$ $\Rightarrow Y = \frac{1}{3} \begin{bmatrix} \frac{6}{5} & \frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix} = \begin{bmatrix} \frac{2}{5} & \frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix}$ 8. Find X if Y = $\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$ and 2X + Y = $\begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$. Sol. $2X + Y = \begin{bmatrix} 1 & 0 \end{bmatrix} \Rightarrow 2X = \begin{bmatrix} 1 & 0 \end{bmatrix}_{-Y}$ $2X = \begin{vmatrix} -3 & 2 \\ 1 & 0 \\ -3 & 2 \end{vmatrix} - \begin{vmatrix} -3 & 2 \\ -3 & 2 \end{vmatrix} = \begin{vmatrix} -3 & 2 \\ -3 & 2 \end{vmatrix} = \begin{vmatrix} -3 & 2 \\ -3 & 2 \end{vmatrix} = \begin{vmatrix} -3 & 2 \\ -3 & 2 \end{vmatrix} = \begin{vmatrix} -2 & -2 \\ -3 & 2 \end{vmatrix}$ \Rightarrow $\Rightarrow \qquad X = \frac{1}{2} \begin{bmatrix} -2 & -2 \\ -4 & -2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -2 & -1 \end{bmatrix}.$ 9. Find x and y, if $2\begin{bmatrix} 1 & 3 \\ 1 & + \end{bmatrix} + \begin{bmatrix} y & 0 \\ 0 & - \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 0 & - \end{bmatrix}$. Sol. Given:

Class 12

10. Solve the equation for x, y, z and t if $2\begin{bmatrix} x & z \\ v & t \end{bmatrix} + 3\begin{bmatrix} 1 & -1 \\ 0 & \end{bmatrix} = 3\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}$ **Sol. Given:** $2\begin{vmatrix} x & z \\ y & t \end{vmatrix} + 3\begin{vmatrix} 1 & -1 \\ 0 & -1 \end{vmatrix} = 3\begin{vmatrix} 3 & 5 \\ 4 & 6 \end{vmatrix}$ $\begin{bmatrix} 2x & 2z \\ 2y & 2t \end{bmatrix} + \begin{bmatrix} 3 & -3 \\ 0 & 6 \end{bmatrix} = \begin{bmatrix} 9 & 15 \\ 12 & 18 \end{bmatrix}$ \Rightarrow $\begin{bmatrix} 2x+3 & 2z-3 \\ 2y+0 & 2t+6 \end{bmatrix} = \begin{bmatrix} 9 & 15 \\ 12 & 18 \end{bmatrix}$ \Rightarrow Since the two matrices are equal, so the corresponding elements are equal. Thus, 2x + 3 = 9 $2x = 9 - 3 = 6 \implies x = 3$ $2z - 3 = 15 \implies 2z = 18 \implies z = 9$ $2y = 12 \implies y = 6$ \Rightarrow Also Also \Rightarrow t=62t + 6 = 18 and 2t = 12and $\therefore x = 3, y = 6, z = 9 \text{ and } t = 6.$ If $x + y \begin{bmatrix} -1 \end{bmatrix} = 10^{-1}$, find the values of x and y. 11. If x $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix}$ Sol. Given: $x + y \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 10 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 2x \\ 3x \end{bmatrix} + \begin{bmatrix} -y \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 2x - y \\ 3x \end{bmatrix} + \begin{bmatrix} -y \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} \Rightarrow \begin{bmatrix} 2x - y \\ 3x + y \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$ Equating corresponding entries, we have ...(i) 2x - y = 10and ...(ii) 3x + y = 5Adding eqns. (i) and (ii) we have 5x = 15 $x = \frac{15}{2} = 3$ or Putting x = 3 in (*ii*), $9 + y = 5 \implies y = 5 - 9 = -4$

and
$$3z = -1 + z + w \Rightarrow 2z - w = -1$$
 ...(iii)
and $3w = 2w + 3 \Rightarrow w = 3$.
Putting $w = 3$ in eqn. (iii),
 $2z - 3 = -1 \Rightarrow 2z = 2 \Rightarrow z = 1$
 $\therefore x = 2, y = 4, z = 1, w = 3$.
13. If $\mathbf{F}(\mathbf{x}) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \end{bmatrix}$, show that $\mathbf{F}(\mathbf{x}) \mathbf{F}(\mathbf{y})$
 $= \mathbf{F}(\mathbf{x} + \mathbf{y})$.
Sol. Given: $\mathbf{F}(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \end{bmatrix}$...(i)
 $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$
 $= \mathbf{F}(\mathbf{x} + \mathbf{y})$.
Sol. Given: $\mathbf{F}(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \end{bmatrix}$...(i)
 $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$
 $= \mathbf{F}(\mathbf{x} + \mathbf{y})$.
Sol. Given: $\mathbf{F}(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \end{bmatrix}$ $\begin{bmatrix} \cos y & -\sin y & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $L.H.S. = \mathbf{F}(x) \mathbf{F}(y) = \begin{bmatrix} \sin x & \cos x & 0 \\ \sin y & \cos y & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$
Performing row by column multiplication,
 $= \begin{bmatrix} \cos x \cos y - \sin x \sin y + 0 & -\cos x \sin y - \sin x \cos y + 0 & 0 - 0 + 0 \end{bmatrix}$
 $\begin{bmatrix} 0 + 0 + 0 & 0 + 0 + 0 & 0 + 0 + 1 \end{bmatrix}$
 $= \begin{bmatrix} \cos (x + y) & -\sin (x + y) & 0 \\ 0 & 0 & 1 \end{bmatrix}$ [: $-\cos x \sin y - \sin x \cos y = -\sin (x - y)$]
Now, changing x to $x + y$ in (i), we get
 $\mathbf{F}(x + y) = \begin{bmatrix} \cos (x + y) & -\sin (x + y) & 0 \\ \sin (x + y) & \cos (x + y) & 0 \\ \sin (x + y) & \cos (x + y) & 0 \end{bmatrix}$ Thus, L.H.S. = R.H.S.
14. Show that:
 $\mathbf{f}(\mathbf{j} \begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix} \downarrow_{\mathbf{j}}$ **Covertical**

 $\begin{bmatrix} 10 - 3 & 5 - 4 \end{bmatrix} \begin{bmatrix} 7 & 1 \end{bmatrix}$...(i) $\begin{bmatrix} 12+21 & 6+28 \end{bmatrix} \begin{bmatrix} 33 & 34 \end{bmatrix}$ R.H.S. = $\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 2(5) + 1(6) & 2(-1) + 1(7) \\ 3(5) + 4(6) & 3(-1) + 4(7) \end{bmatrix}$ $= \begin{bmatrix} 10+6 & -2+7\\ 15+24 & -3+28 \end{bmatrix} = \begin{bmatrix} 16 & 5 \end{bmatrix}$...(*ii*) 39 25 From (i) and (ii), we can say that L.H.S. \neq R.H.S. 1] 7 (Because corresponding entries of matrices $\begin{vmatrix} 33 & 34 \end{vmatrix}$ and
 16
 5

 39
 25

are not same). (*ii*) Let A = $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \end{bmatrix}$ and B = $\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$ 2 1 1 0 4 Here, matrices A and B are both of order 3 × 3 respectively, therefore AB and BA are both of same order 3×3 . Now, $AB = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$ $|1 \ 1 \ 0|| \ 2 \ 3 \ 4|$ Performing row by column multiplication, $\begin{bmatrix} 1(-1) + 2(0) + 3(2) & 1(1) + 2(-1) + 3(3) & 1(0) + 2(1) + 3(4) \end{bmatrix}$ $= \begin{vmatrix} 0(-1) + 1(0) + 0(2) & 0(1) + 1(-1) + 0(3) & 0(0) + 1(1) + 0(4) \end{vmatrix}$ 1(-1) + 1(0) + 0(2) 1(1) + 1(-1) + 0(3) 1(0) + 1(1) + 0(4)or AB = $\begin{bmatrix} -1+6 & 1-2+9 & 2+12 \end{bmatrix} \begin{bmatrix} 5 & 8 & 14 \end{bmatrix}$ $\begin{vmatrix} 0 & -1 & 1 \end{vmatrix} = \begin{bmatrix} 0 & -1 & 1 \end{bmatrix} \dots (i)$ $\begin{bmatrix} & & & & \\ & -1 & 1-1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$ Again, BA = $\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$ Performing row by common multiplication, $\begin{bmatrix} (-1)1 + 1(0) + 0(1) & (-1)3 + 1(0) + 0(0) \end{bmatrix}$

From (*i*) and (*ii*), $AB \neq BA$ because corresponding entries of matrices AB and BA are not same.

Chapter 3 - Matrices

Remark. From both questions (*i*), (*ii*) we can learn that matrix multiplication is not commutative.

15. Find
$$A^2 - 5A + 6I$$
 if $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$.
Sol. $A^2 = A \cdot A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$

Performing row by column multiplication,

$= \begin{bmatrix} 4+0+1\\ 4+2+3 \end{bmatrix}$	$0 + 0 - 1 \\ 0 + 1 - 3$	2 + 0 + 0 2 + 3 + 0	or $A^2 =$	59	-1 -2	2 5
2 - 2 + 0						-2

: $A^2 - 5A + 6I = A^2 - 5A + 6I_3$ (Here I is I_3 because matrices A and A^2 are of order 3 × 3)

$$= \begin{bmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \end{bmatrix} - 5 \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \end{bmatrix} + 6 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \end{bmatrix} - \begin{bmatrix} 10 & 0 & 5 \\ 10 & 5 & 15 \end{bmatrix} + \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 5 & -1 & -2 \end{bmatrix} \begin{bmatrix} 5 & -5 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 6 \end{bmatrix}$$
$$\begin{bmatrix} 5 & -10 + 6 & -1 - 0 + 0 & 2 - 5 + 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & -3 \\ -1 & -1 & -10 \end{bmatrix}$$
$$= \begin{bmatrix} 9 - 10 + 0 & -2 - 5 + 6 & 5 - 15 + 0 \end{bmatrix} = \begin{bmatrix} -1 & -1 & -10 \\ -5 & 4 & 4 \end{bmatrix}$$
Remark. The above question can also be stated as:
If $f(x) = x^2 - 5x + 6$ and $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$; then find $f(A)$.
$$\begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$$

16. If $A = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix}$, provide the second sec

Putting values of A², A and I in the given equation $A^2 = kA - 2I$, we have $\begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix} = k \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3k & -2k \\ 4k & -2k \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix} = \begin{bmatrix} 3k-2 & -2k \\ 4k & -2k-2 \end{bmatrix}$ Equating corresponding entries, we have $3k - 2 = 1 \Rightarrow 3k = 3 \Rightarrow k = 1 \text{ and } - 2 = -2k \Rightarrow k = 1$ and $4k = 4 \implies k = 1$ and $-4 = -2k - 2 \implies 2k = -2 + 4 = 2$ $\Rightarrow k = 1$ Therefore, value of k = 1 and is same from all the four equations. 18. If A = $\begin{vmatrix} 0 & -\tan \frac{\alpha}{2} \\ \frac{\alpha}{\tan 0} \end{vmatrix}$ and I is the identity matrix of order 2, show that I + A = (I - A) $\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ $\begin{array}{c|c} \mathbf{o} & -\tan\frac{\alpha}{2} \\ \underline{\alpha} \\ \mathbf{a} \end{array} \quad \text{and I is the identity matrix of order 2} \end{array}$ Sol. A = tan 2 0 |j $I = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ i.e., L.H.S. = I + A = I₂ + A = $\begin{vmatrix} 1 & 0 \end{vmatrix}$ + $\begin{vmatrix} 0 & -\tan \frac{\alpha}{2} \end{vmatrix}$ $\begin{vmatrix} 1 & 0 \end{vmatrix}$ + $\begin{vmatrix} 0 & -\tan \frac{\alpha}{2} \end{vmatrix}$ 1 $-\tan\frac{\alpha}{2}$ = | ...(i) α tan $\begin{bmatrix} 1 & 0 \end{bmatrix}$

$$\begin{bmatrix} \cos \alpha & -\sin \alpha \end{bmatrix} \begin{bmatrix} 1 & \tan \frac{\alpha}{2} \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
R.H.S. = $(I - A)$ | = | $\underline{\alpha}$ | $\sin \alpha & \cos \alpha \end{bmatrix}$

$$\begin{bmatrix} \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} -\tan \alpha \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
Performing row by column multiplication,
= $\begin{bmatrix} \cos \alpha + \sin \alpha \tan \frac{\alpha}{2} & -\sin \alpha + \cos \alpha \tan \frac{\alpha}{2} \\ \cos \alpha + \sin \alpha \tan \frac{\alpha}{2} & -\sin \alpha + \cos \alpha \tan \frac{\alpha}{2} \end{bmatrix}$

$$= \begin{bmatrix} -\cos \alpha \tan \frac{\alpha}{2} + \sin \alpha & \sin \alpha \tan \frac{\alpha}{2} + \cos \alpha \\ \cos \alpha + \sin \alpha - \frac{\sin \frac{\alpha}{2}}{2} & -\sin \alpha + \cos \alpha - \frac{\sin \frac{\alpha}{2}}{2} \end{bmatrix}$$

$$= \begin{bmatrix} \cos \alpha \cos \frac{\alpha}{2} + \sin \alpha & \sin \alpha \sin \frac{\alpha}{2} + \cos \alpha \\ \cos \alpha + \sin \alpha - \frac{\sin \frac{\alpha}{2}}{2} & -\sin \alpha + \cos \alpha - \frac{\sin \frac{\alpha}{2}}{2} \end{bmatrix}$$

$$= \begin{bmatrix} \cos \alpha \cos \frac{\alpha^{2}}{2} & \cos \frac{\alpha}{2} \\ \cos \alpha - \cos \alpha - \sin \frac{\alpha}{2} + \sin \alpha - \sin \alpha - \frac{\sin \alpha}{2} + \cos \alpha - \sin \frac{\alpha}{2} \end{bmatrix}$$
Numerator of a_{12} is $= -\frac{2}{3} \sin \alpha \cos \frac{\alpha}{2} - \cos \alpha \sin \frac{\alpha}{2}$

$$\begin{bmatrix} \cos \alpha - \alpha & \sin \frac{\alpha}{2} + \sin \alpha - \cos \frac{\alpha}{2} & \sin \alpha - \sin \frac{\alpha}{2} + \cos \alpha - \sin \frac{\alpha}{2} \\ \cos \alpha - \cos \alpha - \sin \frac{\alpha}{2} + \sin \alpha - \cos \alpha - \cos \alpha - \cos \alpha - \cos \alpha - \sin \alpha - \sin \alpha - \cos \alpha - \cos \alpha - \sin \alpha - \cos \alpha - \sin \alpha - \cos \alpha - \cos \alpha - \sin \alpha - \sin$$

2000.

100 2×1

i.e.,
$$I + A = (I - A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

19. A trust fund has ` 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide ` 30,000 in two types of bonds, if the trust fund must obtain an annual interest of

Sol. Let the investment in first bond be x, then the investment in second bond = (30,000 - x)

Interest paid by first bond = $5\% = \frac{-5}{100}$ per rupee

Interest paid by second bond = $7\% = \frac{-7}{100}$ per rupee

Matrix of investment is A = $[x 30000 - x]_{1 \times 2}$

Matrix of annual interest per rupee is B =

Matrix of total annual interest is [5]

$$AB = \begin{bmatrix} x & 30000 - x \end{bmatrix} \begin{vmatrix} 100 \\ -5x \\ -7 \\ -100 \end{vmatrix} = \begin{bmatrix} -5x \\ 100 \\ -7 \\ -100 \end{vmatrix}$$
$$= \begin{bmatrix} 5x + 210000 - 7x \\ -7x \\ -100 \end{bmatrix} \begin{bmatrix} 210000 - 2x \\ -100 \end{bmatrix}$$

 \therefore Total annual interest = $\frac{2,10,000 - 2x}{100}$ (a) total annual interest is given to be ` 1,800 $\frac{2,10,000-2x}{2} = 1,800$

100

 \Rightarrow 2,10,000 - 2x = 1,80,000 \therefore x = 15,000Hence, investment in first bond = ` 15,000 and investment in second bond $\tilde{\mathbf{L}}^{(30,000 - x)}$ 000 - 15,000) = 15,000.

20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are `80, `60 and `40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra. **Sol.** Let us represent the number of books as a 1×3 row matrix l0 dozen 8 dozen l0 dozen] B = $| l0 l2 l20 8 \times l2 = 96 l0 \times l2 = l20 |$ Let us represent the selling prices of each book as a 3×1 column 80 60 matrix S =40 \therefore [Total amount received by selling all books]_{1 × 1} 80 $= BS = [120 \ 96 \ 120]_{1 \times 3}$ 60 40 |_{3 × L} $= [120(80) + 96(60) + 120(40)]_{1 \times 1}$ = [9600 + 5760 + 4800] = [20160]Equating corresponding entries, Total amount received by selling all the books = 20160. Assume X, Y, Z, W and P are matrices of order $2 \times n$, $3 \times k$, $2 \times p$, $n \times 3$ and $p \times k$ respectively. Choose the correct answer in Exercises 21 and 22. The restriction on *n*, *k* and *p* so that PY + WY will be 21. defined are: (B) k is arbitrary, p = 2(A) k = 3, p = n(C) p is arbitrary, k = 3(D) k = 2, p = 3. **Sol. Given:** Matrix PY + WY is defined (\Rightarrow possible). Matrix P is of order $p \times k$ and matrix Y is of order $3 \times k$ and matrix W is of order $n \times 3$. Now PY + WY = (P + W) Y... (i) We know that sum P + W is defined if two matrices $\downarrow \qquad \downarrow$ $p \times k n \times 3$ P and W are of same order. Therefore p = n and k = 3 and order of P + W is $n \times 3$ (or $p \times k$) Therefore from (1), PY + WY = (P + W) Y is defined as $n \times 3 \quad 3 \times k$ Number of columns in P + W is same as number of rows in Y. $\therefore p = n \text{ and } k = 3$ CUET cademy

22. If n = p, then order of the matrix 7X – 5Z is (A) $p \times 2$ (B) $2 \times n$ (C) $n \times 3$ (D) $p \times n$. **Sol.** Since n = p (given), the order of matrices X and Z are equal. \therefore 7X - 5Z is well defined and the order of 7X - 5Z is same as the order of X and Z. \therefore The order of 7X – 5Z is either equal to 2 × *n* or 2 × *p* (:: n = p):. The correct option is (B), *i.e.*, the order of 7X - 5Z is $2 \times n$. UET cademv Call Now For Live Training 93100-87900

2. If $A = \begin{bmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \end{bmatrix}$, then verify that -2 1 1 1 3 1 (i) (A + B)' = A' + B' (ii) (A - B)' = A' - B'. **Sol.** (*i*) To verify (A + B)' = A' + B' $A + B = \begin{bmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \end{bmatrix} + \begin{bmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \end{bmatrix}$ $\begin{vmatrix} & & & | & | & | \\ -2 & 1 & 1 \end{vmatrix} \begin{vmatrix} & & & | & | \\ 1 & 3 & 1 \end{vmatrix}$ $\begin{bmatrix} -1-4 & 2+1 & 3-5 \end{bmatrix} \begin{bmatrix} -5 & 3 & -2 \end{bmatrix}$ $= \begin{vmatrix} 5+1 & 7+2 & 9+0 \end{vmatrix} = \begin{vmatrix} 6 & 9 & 9 \end{vmatrix}$ $\begin{vmatrix} -2+1 & 1+3 & 1+1 \end{vmatrix} \begin{vmatrix} -1 & 4 & 2 \end{vmatrix}$ (Making) changing rows of A + B as columns of the new matrix, we have L.H.S. = $(A + B)' = \begin{vmatrix} -5 & 6 & -1 \\ 3 & 9 & 4 \end{vmatrix}$ L.H.S. = (A + b) = 3 - 9 - 2 $\begin{bmatrix} -2 & 9 & 2 \end{bmatrix}$ $\begin{bmatrix} -1 & 2 & 3 \end{bmatrix}' \begin{bmatrix} -4 & 1 & -5 \end{bmatrix}'$ R.H.S. = $A' + B' = \begin{bmatrix} 5 & 7 & 9 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}$...(i) $=\begin{bmatrix} -1 & 5 & -2 \\ 2 & 7 & 1 \end{bmatrix} + \begin{bmatrix} -4 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$ $\begin{bmatrix} -1-4 & 5+1 & -2+1 \end{bmatrix} \begin{bmatrix} -5 & 6 & -1 \end{bmatrix}$ $= \begin{vmatrix} 2+1 & 7+2 & 1+3 \end{vmatrix} = \begin{vmatrix} 3 & 9 & 4 \end{vmatrix}$...(*ii*) $\begin{bmatrix} 3-5 & 9+0 & 1+1 \end{bmatrix} = \begin{bmatrix} -2 & 9 \end{bmatrix}$ From (i) and (ii), we have L.H.S. = R.H.S.*i.e.*, (A + B)' = A' + B'(ii) To verify (A - B)' = A' - B' $\mathbf{A} - \mathbf{B} = \begin{bmatrix} -1 & 2 & 3\\ 5 & 7 & 9 \end{bmatrix} - \begin{bmatrix} -4 & 1 & -5\\ 1 & 2 & 0 \end{bmatrix}$ $=\begin{bmatrix} -1+4 & 2-1 & 3+5\\ 5-1 & 7-2 & 9-0\\ \end{bmatrix} =\begin{bmatrix} 3 & 1 & 8\\ 4 & 5 & 9\\ \end{bmatrix}$

 $\begin{bmatrix} 3 & 4 & -3 \\ 1 & 5 & -2 \end{bmatrix}$ L.H.S. = $(A - B)' = \begin{vmatrix} & & & \\ & & &$...(i) R.H.S. = A' - B' = $\begin{vmatrix} 5 & 7 & 9 \end{vmatrix} - \begin{vmatrix} -1 & 1 & 2 & 0 \end{vmatrix}$ $\begin{bmatrix} -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 \end{bmatrix}$ $= \begin{bmatrix} -1 & 5 & -2 \\ 2 & 7 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} -4 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$ $\begin{bmatrix} 3 & 9 & 1 \end{bmatrix} \begin{bmatrix} -5 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} -1+4 & 5-1 & -2-1 \end{bmatrix} \begin{bmatrix} 3 & 4 & -3 \end{bmatrix}$ $= \begin{vmatrix} 2 - 1 & 7 - 2 & 1 - 3 \end{vmatrix} = \begin{vmatrix} 1 & 5 & -2 \end{vmatrix}$...(ii) $\begin{vmatrix} 3+5 & 9-0 & 1-1 \end{vmatrix} \begin{vmatrix} 8 & 9 & 0 \end{vmatrix}$ From (i) and (ii), we have L.H.S. = R.H.S.Note (A')' = A. 3 4 [-1] 2 1] 3. If $A' = \begin{bmatrix} -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, then verify that 0 1 (i) (A + B)' = A' + B' (ii) (A - B)' = A' - B'. Sol. Given: $A' = \begin{bmatrix} 3 & 4 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 \end{bmatrix}$ -1 2 1 | 1 2 3] 0 1 Making rows of A' as columns of the new matrix (transpose of A' *i.e.*, (A')') *i.e.*, $A = \begin{bmatrix} -1 & 0 \end{bmatrix}$ (i) $A + B = \begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$ $\begin{vmatrix} 4 & 2 & 1 \\ -1 & 0 \\ 4 & 2 & 1 \end{vmatrix} + \begin{bmatrix} -1 & 2 & 1 \\ -1 & 2 & 3 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 3-1 & -1+2 & 0+1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 4+1 & 2+2 & 1+3 \end{bmatrix} \quad \begin{vmatrix} 5 & 4 & 4 \end{vmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix}$

...(i)

R.H.S. = A' + B' =
$$\begin{bmatrix} 3 & 4 \\ -1 & 2 \end{bmatrix} + \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}'$$

(given)
$$\begin{bmatrix} 1 & 1 & 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 3 - 1 & 4 + 1 \end{bmatrix} \begin{bmatrix} 2 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 \end{bmatrix} = \begin{bmatrix} -1 + 2 & 2 + 2 \end{bmatrix} = \begin{bmatrix} 1 & 4 \end{bmatrix} \dots (ii)$$

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} 0 + 1 & 1 + 3 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} \dots (ii)$$

Chapter 3 - Matrices

Class 12

From (i) and (ii), we have L.H.S. = R.H.S. $A - B = \begin{bmatrix} 3 & -1 & 0 \\ & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 2 & 1 \\ & 1 & 2 & 3 \end{bmatrix}$ $= \begin{bmatrix} 3+1 & -1-2 & 0-1 \\ 4-1 & 2-2 & 1-3 \end{bmatrix} = \begin{bmatrix} 4 & -3 & -1 \\ 3 & 0 & -2 \end{bmatrix}$ $\begin{bmatrix} 4 & -3 & -1 \end{bmatrix} \begin{bmatrix} 4 & -3 & -1 \\ -1 & 2-2 & 1-3 \end{bmatrix} = \begin{bmatrix} 4 & -3 & -1 \\ -1 & 2-2 & 1-3 \end{bmatrix}$ (ii) A - B = '...(i) L3 0 <u>-2</u> $\begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$ R.H.S. = A' - B' = $\begin{vmatrix} -1 & 2 \end{vmatrix} - \begin{vmatrix} 2 & - \end{vmatrix}$ 0 1 $\begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & +1 & 4 & -1 \end{bmatrix} \begin{bmatrix} 4 & 3 \end{bmatrix}$ = $\begin{vmatrix} -1 & 2 & -1 & 2 & 2 \end{vmatrix} = \begin{vmatrix} -1 - 2 & 2 & -2 \\ -1 & 2 & -1 & 2 & 0 \end{vmatrix}$...(*ii*) $0 \ 1 \ | \ 1 \ 3 \ | \ 0 - 1 \ 1 - 3 \ - 1 \ - 2$ 4. If $A' = \begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$, then find (A + 2B)'. Sol. Given: $A' = \begin{bmatrix} -2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 0 \end{bmatrix}$ 1 2 1 2

Making rows of A' as columns of the new matrix (transpose of A' *i.e.*, (A')') *i.e.*, $A = \begin{bmatrix} -2 & 1 \end{bmatrix}$

$$\therefore A + 2B = \begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix} + 2\begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} -2 & 0 \\ 2 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} -2 - 2 & 1 + 0 \\ 3 + 2 & 2 + 4 \end{bmatrix} = \begin{bmatrix} -4 & 1 \\ 5 & 6 \end{bmatrix}$$

Making rows of this matrix as columns of new matrix, we have $(A + 2B)' = \begin{bmatrix} -4 & 5 \end{bmatrix}$

 $\therefore \quad AB = \begin{vmatrix} \begin{bmatrix} 1 \\ -4 \end{vmatrix} \begin{bmatrix} -1 & 2 \\ 3 \end{vmatrix}_{3 \times 1}$ 3×3 and = $\begin{bmatrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \end{bmatrix}$ (Using row by column multiplication rule) $\begin{bmatrix} -1 & 2 & 1 \end{bmatrix}' \begin{bmatrix} -1 \end{bmatrix}$ L.H.S. = (AB)' = $\begin{vmatrix} -1 & 2 & 1 \\ 4 & -8 & -4 \end{vmatrix} = \begin{vmatrix} 2 & -8 & 6 \\ 2 & -3 & 6 & 3 \end{vmatrix} = \begin{vmatrix} 1 & -4 & 3 \end{vmatrix}$...(i) R.H.S. = B'A' = $\begin{bmatrix} -1 & 2 & 1 \end{bmatrix}' \begin{bmatrix} -4 \\ 3 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} -1 & 4 & -3 \\ -1 & 4 & -3 \end{bmatrix} = \begin{bmatrix} 2 & -8 & 6 \\ 2 & -8 & 6 \end{bmatrix} \dots (ii)$ From (i) and (ii), we have L.H.S. = R.H.S. i.e., (AB)' = B'A'. [o] (ii) Given: $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 5 & 7 \end{bmatrix}$ $\therefore AB = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 5 & 7 \end{bmatrix}_{1 \times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 5 & 7 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 2 \end{bmatrix}_{3\times 1}$ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}' \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$ L.H.S. = (AB)' = $\begin{bmatrix} 1 & 5 & 7 \\ 2 & 10 & 14 \end{bmatrix}$ = $\begin{bmatrix} 0 & 5 & 10 \\ 0 & 7 & 14 \end{bmatrix}$...(*i*) $\begin{bmatrix} 0 \end{bmatrix}' \begin{bmatrix} 1 \end{bmatrix}$ R.H.S. = $\beta'A' = \begin{bmatrix} 1 & 5 & 7 \end{bmatrix}' = \begin{bmatrix} 5 \\ 10 \end{bmatrix}$ CUET₀ 0 7 14

2

6. (i) If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & & \end{bmatrix}$, , then verify that A'A = Icos (*ii*) If $A = \begin{bmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{bmatrix}$, then verify that A'A = I. **Sol.** (*i*) **Given:** $\vec{A} = \begin{bmatrix} \cos \alpha & \sin \alpha \end{bmatrix}$ $-\sin\alpha \cos\alpha$ $\cos \alpha \sin \alpha$ $\sin \alpha$ $\sin \alpha$ \therefore L.H.S. = A'A= $-\sin \alpha \cos \alpha$ $-\sin \alpha \cos \alpha$ $\lceil \cos \alpha - \sin \alpha \rceil \rceil \lceil \cos \alpha \sin \alpha \rceil$ = $\sin \alpha \quad \cos \alpha \quad -\sin \alpha \quad \cos \alpha$ $\begin{bmatrix} \cos^2 \alpha + \sin^2 \alpha \\ \cos \alpha \sin \alpha - \sin \alpha \cos \alpha \end{bmatrix}$ $\sin \alpha \cos \alpha - \cos \alpha \sin \alpha$ $\sin^2 \alpha + \cos^2 \alpha$ (Row by Column Multiplication) $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2 (= I) = R.H.S.$ (*ii*) **Given:** $A = \frac{1}{\sin \alpha} \cos \alpha$ $-\cos \alpha \sin \alpha^{\dagger}$ \therefore L.H.S. = A'A = $\sin \alpha \cos \alpha$]' $-\cos \alpha \sin \alpha$ $\lceil \sin \alpha - \cos \alpha \rceil \lceil \sin \alpha - \cos \alpha \rceil$ $\cos \alpha \quad \sin \alpha \quad | \quad | \quad -\cos \alpha$ $\sin \alpha$ $\sin^2 \alpha + \cos^2 \alpha$ $\sin \alpha \cos \alpha - \cos \alpha \sin \alpha$ $\cos \alpha \sin \alpha - \sin \alpha \cos \alpha \qquad \cos^2 \alpha + \sin^2 \alpha$ $= I_2 (= I) = R.H.S.$ **□ 1 -1 5 □**

new matrix
$$A' = \begin{bmatrix} 1 & -1 & 5 \\ -1 & 2 & 1 \end{bmatrix} = A$$
 [By (*i*)]

$$\begin{bmatrix} 1 & 5 & 1 & 3 \end{bmatrix}$$

$$\therefore A' = A$$

$$\therefore By definition of symmetric matrix, A is a symmetric matrix.
(i) Given: Matrix $A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$...(*i*)

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}$$
Taking (-1) common from R.H.S. of A', we have

$$\begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}$$
Taking (-1) common from R.H.S. of A', we have

$$\begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 \end{bmatrix}$$

$$\therefore By definition, matrix A is a skew-symmetric matrix.
8. For the matrix $A = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}$, verify that
(i) (A + A) is a symmetric matrix.
(ii) (A - A') is a symmetric matrix.
Sol. (*i*) Given: $A = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}$
Let $B = A + A' = A + \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix}$

$$= \begin{bmatrix} 1+1 & 5+6 \\ 6+5 & 7+7 \end{bmatrix} = \begin{bmatrix} 2 & 11 \\ 11 & 14 \end{bmatrix}$$
...(*i*)

$$\therefore B' = \begin{bmatrix} 2 & 11 \\ 1 & 14 \end{bmatrix} = B$$
[By (*i*)]$$$$

or $B = \begin{bmatrix} 0 & -1 \end{bmatrix}$...(i) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ B' = $\begin{bmatrix} 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \end{bmatrix}$ Taking (-1) common from R.H.S. of B', B' = - $\begin{bmatrix} 0 & -1 \end{bmatrix} = -B \quad [By (i)]$ \therefore Matrix B *i.e.*, A – A' is a skew symmetric matrix. $\begin{bmatrix} 0 & a & b \\ -a & 0 & c \end{bmatrix}$ 1 1 $\begin{bmatrix} o & a & b \end{bmatrix}$ $A = \begin{vmatrix} -a & 0 \end{vmatrix} c$ Sol. Given: $\begin{bmatrix} -b & -c & 0 \end{bmatrix}$ $\begin{bmatrix} \mathbf{0} & a & b \end{bmatrix}^{\prime} \begin{bmatrix} \mathbf{0} & -a & -b \end{bmatrix}$ $A' = \begin{vmatrix} -a & 0 & c \end{vmatrix} = \begin{vmatrix} a & 0 & -c \end{vmatrix}$ *.*.. $\begin{bmatrix} -b & -c & 0 \end{bmatrix} \begin{bmatrix} b & c & 0 \\ 0 & a & b \end{bmatrix} \begin{bmatrix} 0 & -a & -b \end{bmatrix}$ $\therefore \qquad \mathbf{A} + \mathbf{A}' = \begin{vmatrix} -a & \mathbf{o} & c \end{vmatrix} + \begin{vmatrix} a & \mathbf{o} & -c \end{vmatrix}$ $\begin{bmatrix} -b & -c & 0 \end{bmatrix} \begin{bmatrix} b & c & 0 \end{bmatrix}$ $\begin{bmatrix} 0+0 & a-a & b-b \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ $= \begin{vmatrix} -a+a & 0+0 & c-c \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 \end{vmatrix}$ $\therefore \quad \frac{1}{2} (A + A') = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Again A - A' = $\begin{bmatrix} 0 & a & b \\ -a & 0 & c \end{bmatrix} - \begin{bmatrix} 0 & -a & -b \\ a & 0 & -c \end{bmatrix}$ $\begin{bmatrix} c & o \end{bmatrix}$ $\begin{bmatrix} b + b \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$ $2a \quad 2b$

Chapter 3 - Matrices

10. Express the following matrices as the sum of a symmetric and skew symmetric matrix:

$\begin{bmatrix} 3 & 5 \end{bmatrix}$	6 - 2	2
(<i>i</i>) [1 -1]	(<i>ii</i>) - 2 3 -	1
□ □ □ □ □ □ □ □ □ □	2 -1	3
$ \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix} $	$ \begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix} $	
-4 -5 2		

Note Formula. Every square matrix A can be expressed as the sum of a symmetric matrix A (A + A') and skew

. . .

symmetric matrix
$$\frac{1}{2}(A - A')$$
.
Sol. (*i*) Given: Matrix (say) $A = \begin{bmatrix} 3\\ 1 \end{bmatrix}$

therefore,
$$A' = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}' = \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix}$$

By Formula above, symmetric matrix part of A 1 $(\begin{bmatrix} 3 & 5 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix})$

$$= 2 (A + A') = 2 \begin{pmatrix} | 1 - 1 \rangle & | 5 - 1 \rangle \\ 2 & | 1 - 1 \rangle & | 5 - 1 \rangle \\ = \frac{1}{2} \begin{pmatrix} 6 & 6 \\ 6 & -2 \end{pmatrix} \neq \begin{bmatrix} 3 & 3 \\ 3 & -1 \end{bmatrix} \qquad \dots (i)$$

_5

and skew symmetric matrix part of A.

.

$$\frac{1}{2} , \frac{1}{2} (|3 \ 5| \ |3 \ 1|) \ \underline{1} |3 \ -3 \ 5 \ -1|$$

$$= \frac{1}{2} (A - A') = |||_{1} - 1|^{-1} |5 \ -1||_{1} = || ||_{1} ||_$$

= symmetric **CUES** + skew symmetric matrix

Chapter 3 - Matrices

$$\begin{bmatrix} 6 -2 & 2 \end{bmatrix} \begin{bmatrix} 6 -2 & 2 \end{bmatrix}$$

$$\therefore A' = \begin{vmatrix} -2 & 3 & -1 \end{vmatrix} = \begin{vmatrix} -2 & 3 & -1 \end{vmatrix}$$

$$\begin{vmatrix} 2 & -1 & 3 \end{vmatrix} = \begin{vmatrix} -2 & 3 & -1 \end{vmatrix}$$

$$\begin{vmatrix} 2 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & -1 & 3 \end{vmatrix}$$

$$\therefore \text{ Symmetric part of A = \frac{1}{4} (A + A') 2$$

$$= \frac{1}{2} \left(\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} + \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} \right)$$

$$= \frac{1}{2} \begin{bmatrix} -4 & 6 & -2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}$$

and skew symmetric part of A = $\frac{1}{2} (A - A')$

$$= \frac{1}{2} \left(\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} + \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} \right)$$

$$= \frac{1}{2} \begin{bmatrix} 6 -6 & -2 + 2 & 2 - 2 \\ -2 + 2 & 3 - 3 & -1 + 1 \\ 2 & -1 & 3 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 6 & -6 & -2 + 2 & 2 - 2 \\ -2 + 2 & 3 - 3 & -1 + 1 \\ 2 & -2 & -1 + 1 & 3 - 3 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\therefore \text{ Given matrix A = sum of matrices (i) and (ii)$$

$$= \text{ symmetric matrix } \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \end{bmatrix}$$

$$+ \text{ skew symmetric matrix } \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \text{Symmetric matrix } \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 \therefore Symmetric part of A = $\frac{1}{(A + A')}$ $= \frac{1}{2} \begin{vmatrix} || & -3 & -3 & -1 \\ -2 & -2 & -2 & 1 \\ || & -4 & -5 & 2 \end{vmatrix} \begin{vmatrix} -1 & -1 & -4 \\ -1 & -5 & -2 \end{vmatrix}$ $= \begin{array}{c} 1 & \begin{bmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \end{bmatrix} = \begin{array}{c} \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2} \\ 1 & 2 & 2 \end{bmatrix} \\ 2 & \begin{bmatrix} -5 & -4 & 4 \end{bmatrix} = \begin{array}{c} 2 & -2 & -2 \\ 2 & \begin{bmatrix} -5 & -4 & 4 \end{bmatrix} = \begin{array}{c} 2 & -2 & -2 \\ 2 & \begin{bmatrix} -5 & -4 & 4 \end{bmatrix} = \begin{array}{c} 2 & -2 & -2 \\ 2 & \begin{bmatrix} -5 & -2 & 2 \\ -5 & -2 & 2 \end{bmatrix} \\ -5 & -2 & 2 \end{bmatrix}$...(i) and skew symmetric part of $A = \frac{1}{2}(A - A')$ $= \frac{1}{2} \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \end{bmatrix}$ 2 | -4 -5 2 | -1 1 2 | $= \frac{1}{2} \begin{bmatrix} 3-3 & 3+2 & -1+4 \\ -2-3 & -2+2 & 1+5 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 3-3 & 3+2 & -1+4 \\ 2 & -2-3 & -2+2 & 1+5 \\ -4+1 & -5-1 & 2-2 \end{bmatrix} \begin{bmatrix} 0 & \frac{5}{2} & \frac{3}{2} \\ -5 & 0 & 3 \\ 3 & -3 & 0 \end{bmatrix} \dots (ii)$ -3 0 :. Given matrix A = sum of matrices (i) and (ii) $= \text{ symmetric matrix} \begin{vmatrix} 3 & 1 & -5 \\ 1 & 2 & 2 \\ 2 & -2 & -2 \\ 2 & -5 & -2 & 2 \end{vmatrix}$ Skew symmetric matrix $\begin{bmatrix} 5 & 3\\ 0 & 2 & 2 \end{bmatrix}$

(iv) Given: matrix say
$$A = \begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix} \therefore A' = \begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 5 & 2 \end{bmatrix}$$

 \therefore Symmetric part of $A = \frac{1}{2}(A + A')$
 $= \frac{1}{1}(\begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 5 & 2 \end{bmatrix}) = \frac{1}{2}(A + A')$
 $= \frac{1}{1}(\begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 5 & 2 \end{bmatrix}) = \frac{1}{2}(A + A')$
 $= \frac{1}{2}(\begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 5 & 2 \end{bmatrix}) = \frac{1}{2}(A - A')$
 $1(\begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1 & -1 \end{bmatrix}) = \frac{1}{2}(\begin{bmatrix} 1 -1 & 5 + 1 \end{bmatrix})$
 $= \frac{1}{2}(\begin{bmatrix} -1 & 2 \end{bmatrix} - \begin{bmatrix} 5 & 2 \end{bmatrix}) = 2(\begin{bmatrix} -1 -5 & 2 - 2 \end{bmatrix})$
 $= \frac{1}{2} (0 - 6) = \begin{bmatrix} 0 & 3 \end{bmatrix} ...(ii)$
 $2 \begin{bmatrix} -6 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$
 $+ skew-symmetric matrix $\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$
 $+ skew-symmetric matrix $\begin{bmatrix} 0 & 3 \\ -3 & 0 \end{bmatrix}$
Choose the correct answer in Exercises 11 and 12
11. If A and B are symmetric matrices
 (A) Skew-symmetric matrix (B) Symmetric Matrix
(C) Zero matrix (C) Zero matrix (D) I dentity matrix.
Sol. Given: A and B are symmetric matrices
 $\Rightarrow A' = A$ and $B' = B$...(i)
Now $(AB - BA) = (AB)' - (BA)'$ $[AP - Q'] = P' - Q']$
 $= BA' - AB$ $[Using (i)]$
 $= -(AB - BA)$
 $= -(AB - BA)$$$

Exercise 3.4

Using elementary transformations, find the inverse of each of the matrices, if it exists in Exercises 1 to 6.

1.
$$\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$

Sol. Let $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$
We shall find A^{-1} , if it exists; by elementary (Row) transformations (only)
So we must write $A = IA$ only and not $A = AI$
 $\therefore \qquad \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$
(Here I is I₂ because A is 2×2)
We shall reduce the matrix on left side to I₂.
Here $a_{11} = 1$
Operate $R_2 \rightarrow R_2 - 2R_1$ to make $a_{21} = 0$

$$\begin{bmatrix} 1 & -1 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} -2 & 1 \end{bmatrix} \qquad \begin{bmatrix} R_2 \rightarrow 2 & 3 \\ 2R_1 \rightarrow 2 & -2 \\ - & - & + \\ \therefore & R_2 - 2R_1 = 0 & 5 \\ R_2 \rightarrow 0 & 1 \\ 2R_1 \rightarrow 2 & 0 \\ - & - & - \\ \therefore & [1 & -1] = \begin{bmatrix} 1 & 0 \\ - & - & - \\ 2R_1 \rightarrow 2 & 0 \\ - & - & - \\ \vdots & R_2 - 2R_1 = -2 & 1 \end{bmatrix}$$

Operate $R_2 \rightarrow \frac{1}{R_2}$ to make $a_{22} = 1$
 $\therefore \qquad \begin{bmatrix} 1 & -1 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{-2} & 0 \\ 1 \end{bmatrix} \begin{bmatrix} 5 & 5 \\ 5 \end{bmatrix}$
Now operate $R_1 \rightarrow R_1 + R_2$ to make $a_{12} = 0$

$$\Rightarrow \begin{bmatrix} 1+0 & -1+1 \end{bmatrix} \begin{bmatrix} 1-\frac{2}{5} & 0+\frac{1}{5} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -5 & 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix} (=I_2) = \begin{bmatrix} \frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{bmatrix}$$

$$A = \begin{bmatrix} 3&1 \end{bmatrix}$$

$$\therefore \text{ By definition of inverse of a matrix, } A^{-1} = \begin{bmatrix} -\frac{52}{5} & \frac{5}{5} \end{bmatrix}$$

Note. Any row operation done on left hand side matrix must also be done on the prefactor I₂ of right hand side matrix.

Note. Definition of inverse of a square matrix. A square matrix B is said to be inverse of a square matrix A if AB = I and BA = I. Then $B = A^{-1}$.

Remark. If the student is interested in finding A^{-1} by elementary column transformations, then he or she should start with A = AI and apply only column operations.

 $2. \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}.$

Sol. Let $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$

We know that $A = I_2 A \implies \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$

Operate $R_1 \leftrightarrow R_2$ (to make $a_{11} = 1$) $\Rightarrow \qquad \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} A$

Operate $R_2 \rightarrow R_2 - 2R_1$ (to make $a_{21} = 0$) $\Rightarrow \begin{bmatrix} 1 & 1 \\ 2 - 2 & 1 - 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 - 0 & 0 - 2 \end{bmatrix} A$ $\Rightarrow \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} A$ Operate $R_2 \rightarrow (-1) R_2$ (to make $a_{22} = 1$) $\Rightarrow \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} A$ Cup the set of the se

Chapter 3 - Matrices

Class 12

By definition of inverse of a square matrix, $A^{-1} = \begin{bmatrix} 1 & -1 \end{bmatrix}$ *.*.. $|_{-1} 2^{-1}$ $3 \cdot \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$ **Sol.** Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$ We know that $A = I_2 A \implies \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$ Here $a_{11} = 1$. To make $a_{21} = 0$, let us operate $R_2 \rightarrow R_2 - 2R_1$. $R_2 \rightarrow 2$ $\begin{vmatrix} 1 & 3 \\ 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ -2 & 1 \end{vmatrix} A$ 7 \Rightarrow $2R_1 \rightarrow 2$ 6 $\therefore R_2 - 2R_1 = 0$ 1 $R_2 \rightarrow 0$ 1 $2R_1 \rightarrow 2$ 0 $\therefore R_2 - 2R_1 = -2$ Now $a_{22} = 1$. To make a_{12} as zero, operate $R_1 \rightarrow R_1 - 3R_2$. $\Rightarrow \begin{bmatrix} 1-0 & 3-3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1+6 & 0-3 \\ -2 & 1 \end{bmatrix} A$ $\begin{bmatrix} 1 & 0 \end{bmatrix} (= I) = \begin{bmatrix} 7 & -3 \end{bmatrix}_A$ $\begin{bmatrix} 0 & 1 \end{bmatrix}^2 \begin{bmatrix} -2 & 1 \end{bmatrix}$ \therefore By definition, $A^{-1} = \begin{bmatrix} 7 \\ -3 \end{bmatrix}$ $|_{-2} |_{1}$ $4 \cdot \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$ **Sol.** Set $A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$ We know that $A = I_2 A \implies \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$ Let us try to make a CONCLET $R_2 \rightarrow R_2 - 2R_1$

Operate $R_2 \leftrightarrow R_2 - 2R_1$ to make $a_{21} = 0$ $\Rightarrow \begin{bmatrix} 1 & 1 \\ 2-2 & 3-2 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1+4 & 0-2 \end{bmatrix} A \Rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 5 & -2 \end{bmatrix} A$ Operate $R_1 \rightarrow R_1 - R_2$ to make $a_{12} = 0$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (= I_2) = \begin{bmatrix} -2-5 & 1+2 \\ 5 & -2 \end{bmatrix}$ $I = \begin{bmatrix} -7 & 3 \\ 2 & 5 & -2 \end{bmatrix} A \implies A^{-1} = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix}$ **Remark.** In the above solution to make $a_{11} = 1$, we could also operate $R_1 \rightarrow \frac{1}{2}R_1$. But for the sake of convenience and to avoid lengthy computations, we should avoid multiplying by fractions. 5. 7 4 **Sol.** Let $A = \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}$ We know that $A = I_2 A \implies \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$ Let us try to make $a_{11} = 1$. Operate $R_2 \rightarrow R_2 - 3R_1$ $\Rightarrow \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{A} \Rightarrow \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{A}$ |1 1| | Operate $R_1 \rightarrow R_1 - R_2$ to make $a_{11} = 1$ $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} A$ \Rightarrow Now Operate $R_2 \rightarrow R_2 - R_1$ (to make $a_{21} = 0$) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix} A$ $\Rightarrow \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \\ 1 & 0 \end{bmatrix}$ Now $a_{12} = 0$ and $a_{22} = 1$. or $I_2 = \begin{bmatrix} 4 & -1 \end{bmatrix}$ cademv

We know that
$$A = I_2A \implies \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Operate $R_1 \leftrightarrow R_2$ to make $a_{11} = 1;$
 $\Rightarrow \qquad \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} A$
Operate $R_2 \rightarrow R_2 - 2R_1$ (to make $a_{21} = 0$)
 $\Rightarrow \qquad \begin{bmatrix} 1 & 3 \\ 2 - 2 & 5 - 6 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 - 0 & 0 - 2 \end{bmatrix} A$
 $\Rightarrow \qquad \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -0 & 0 - 2 \end{bmatrix} A$
Operate $R_2 \rightarrow (-1)R_2$ to make $a_{22} = 1;$
 $\Rightarrow \qquad \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} A$
Operate $R_1 \rightarrow R_1 - 3R_2$ (to make $a_{12} = 0$)
 $\Rightarrow \qquad \begin{bmatrix} 1 -0 & 3 - 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 + 3 & 1 & \frac{1}{2} & 6 \\ -1 & 2 \end{bmatrix} A$
 $\Rightarrow \qquad \begin{bmatrix} 1 & 0 \end{bmatrix} (= 1) = \begin{bmatrix} -3 & -5 \\ -1 & 2 \end{bmatrix}$
 \therefore By Definition, $A^{-1} = \begin{bmatrix} -3 & -5 \\ -1 & 2 \end{bmatrix}$

Using elementary transformations, find the inverse of each of the matrices, if it exists, in Exercises 7 to 14.

7.
$$\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$
.
Sol. Let $A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$
$$\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix}$$
We know that $A = I_2A \Rightarrow$
$$\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} A$$
Let us try to make $a_{11} = 1$.
Operate $R_1 \rightarrow 2R_1 \Rightarrow \begin{bmatrix} 6 & 2 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} A$
Operate R₁ $\rightarrow 2R_1 \Rightarrow \begin{bmatrix} 6 & 2 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} A$

Operate
$$R_2 \rightarrow \frac{1}{2}R_2$$
 (to make $a_{22} = 1$)

$$\Rightarrow \qquad \begin{bmatrix} 1 & 0 \end{bmatrix} (= 1) = \begin{bmatrix} 2 & -1 \end{bmatrix}_A \\ \begin{bmatrix} 0 & 1 \end{bmatrix}^{-2} & \begin{bmatrix} -5 & 3 \end{bmatrix}$$
Now a_{12} has already become zero. Therefore,
 $A^{-1} = \begin{bmatrix} 2 & -1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} 5 & 3 \end{bmatrix}$
Sol. Let $A = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$
We know that $A = I_{2A} \Rightarrow \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^A$
Operate $R_1 \rightarrow R_1 - R_2$ (to make $a_{11} = 1$)
 $\Rightarrow \qquad \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}^A$
Operate $R_2 \rightarrow R_2 - 3R_1$ (to make $a_{21} = 0$)
 $\Rightarrow \qquad \begin{bmatrix} 1 & -1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}^A$
Now a_{22} has already become 1.
Operate $R_1 \rightarrow R_1 - R_2$ (to make $a_{12} = 0$)
 $\Rightarrow \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 + 3 & -1 - 4 \\ 1 & 0 \end{bmatrix}^A$
Now a_{22} has already become 1.
Operate $R_1 \rightarrow R_1 - R_2$ (to make $a_{12} = 0$)
 $\Rightarrow \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 + 3 & -1 - 4 \\ -3 & 4 \end{bmatrix}^A$
 $\Rightarrow \qquad I_2 = \begin{bmatrix} 4 & -5 \\ -3 & 4 \end{bmatrix}^A \qquad \begin{bmatrix} -3 & 4 \end{bmatrix}^A$
 $\Rightarrow \qquad I_2 = \begin{bmatrix} 4 & -5 \\ -3 & 4 \end{bmatrix}^A \qquad \begin{bmatrix} -3 & 4 \end{bmatrix}^A$

Class 12

Chapter 3 - Matrices

Class 12

Now $a_{22} = 1$. Operate $R_1 \rightarrow R_1 - 3R_2$ (to make $a_{12} = 0$) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1+6 & -1-9 \\ -2 & 3 \end{bmatrix} A$ \Rightarrow $\Rightarrow \quad I_2 = \begin{bmatrix} 7 & \ \ & -10 \end{bmatrix}_A \quad \Rightarrow \quad A^{-1} = \begin{bmatrix} 7 & -10 \end{bmatrix}$ $|_2$ -2 3 10. [[]3 -1] $\begin{bmatrix} -4 & 2 \end{bmatrix}$ Sol. Let A = $\begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}$ We know that $A = I A \Rightarrow \begin{bmatrix} 3 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}_A$ Let us try to make $a_{11} = 1$ Operate $R_1 \rightarrow R_1 + R_2$. $\Rightarrow \begin{bmatrix} 3-4 & -1+2 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1+0 & 0+1 \\ 0 & 1 \end{bmatrix} A \Rightarrow \begin{bmatrix} -1 & 1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A$ Δ Operate $R_1 \rightarrow (-1) R_1$ $\Rightarrow \qquad \begin{bmatrix} 1 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 0 & 1 \end{bmatrix} A$ Operate $R_2 \rightarrow R_2 + 4R_1$ (to make $a_{21} = 0$) $\begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -4 & -3 \end{bmatrix} A$ \Rightarrow Operate $R_2 \rightarrow \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ R_2 \end{pmatrix}$ (to make $a_{22} = 1$) $\begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & -1 \end{bmatrix}$ \Rightarrow

11. $\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}$. **Sol.** Let $A = \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ We know that $A = I_2 A \implies \begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_A$ Operate $R_1 \leftrightarrow R_2$ (to make $a_{11}^{\perp} = 1$) $\begin{bmatrix} 1 & -2 \\ 2 & -6 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} A$ \Rightarrow Operate $R_2 \rightarrow R_2 - 2R_1$ (to make $a_{21} = 0$) $\Rightarrow \begin{bmatrix} 1 & -2 \\ 2-2 & -6+4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & A \Rightarrow \begin{bmatrix} 1 & -2 \\ 1 & 0 & 0-2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$ $\bigcirc P_1 = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$ Operate $R_2 \rightarrow \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ R_2 (to make $a_{22} = 1$) $\begin{bmatrix} 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} A$ \Rightarrow Operate $R_1 \rightarrow R_1 + 2R_2$ (to make $a_{12} = 0$) $\begin{bmatrix} 1+0 & -2+2 \end{bmatrix}$ $\begin{bmatrix} 0-1 & 1+2 \end{bmatrix}$ $\begin{vmatrix} & & & & \\ & & & \\ 0 & 1 & & \\ & & 1 & \\ 1 & 0 & & & -1 & 3 \end{vmatrix}$ \Rightarrow $[-1 \ 3]$ $12. \begin{array}{c|c} \Rightarrow & \begin{bmatrix} 0 \\ -3 \end{bmatrix} 1 \end{bmatrix} (= I_2) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} A \Rightarrow A^{-1} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} A$ $\begin{bmatrix} -2 & 1 \\ 3 & -3 \end{bmatrix}$ Sol. Let A = $\begin{bmatrix} 6 & -3 \end{bmatrix}$ -2 1 Here, A is a 2×2 matrix. So, we start with A = I₂ A or $\begin{bmatrix} 6 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}_A$ $\begin{bmatrix} -2 & 1 & \begin{bmatrix} 0 & 1 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 1 & \begin{bmatrix} 0 & 1 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 0 & 0 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 0 & 0 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 0 & 0 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 0 & 0 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 0 & 0 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 0 & 0 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 0 & 0 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 0 & 0 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 0 & 0 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 0 & 0 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 0 & 0 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 0 & 0 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 \end{bmatrix} \\ 0 & 1 & 1 \end{bmatrix} \\ 0 & 1 & \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 \end{bmatrix} \\ 0 & 1 & 1 \end{bmatrix} \\ 0 &$

Class 12

Operating $R_2 \rightarrow R_2 + 2R_1$ to make non-diagonal entry a_{21} below a_{11} as zero,

we have $\begin{bmatrix} 1 & \frac{-1}{2} \\ 2 & \frac{-1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 6 & \frac{-1}{4} \end{bmatrix} A$

$$\begin{bmatrix} -2+2 & 1-2 \end{bmatrix} \begin{bmatrix} 0+6 & 1+0 \end{bmatrix}$$

Class 12

$$\begin{bmatrix} -1 & 1 & 0 \\ 1 & 2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 6 \\ \frac{1}{3} & 1 \end{bmatrix}^{A}$$

Here, all entries in second row of left side matrix are zero.
 $\therefore A^{-1}$ does not exist.
Note. If after doing one or more elementary row operations, we obtain all 0's in one or more rows of the left hand matrix A, then A^{-1} does not exist and we say A is not invertible.
13. $2 - 3$].
Sol. Let $A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}$
We know that $A = IA \implies \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Operate $R_1 \rightarrow R_1 + R_2$ (to make $a_{11} = 1$)
 $\Rightarrow \begin{bmatrix} 2-1 & -3+2 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1+0 & 0+1 \\ 0 & 1 \end{bmatrix}$
 $\Rightarrow \begin{bmatrix} 2-1 & -3+2 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A$
Operate $R_2 \rightarrow R_2 + R_1$ (to make $a_{21} = 0$)
 $\Rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} A$
Now $a_{22} = 1$. Operate $R_1 \rightarrow R_1 + R_2$ (to make $a_{12} = 0$)
 $\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (= I_2) = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} A$
 \therefore By definition; $A^{-1} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$.
14. $\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$
We know that $A = I_2 \bigcirc \begin{bmatrix} 2 & 2 \\ 1 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$

Here one row (namely second row) of the matrix on L.H.S. contains zeros only.

Hence, A^{-1} does not exist.

Using elementary transformations, find the inverse of each of the matrices, if it exists, in Exercises 15 to 17.

15.
$$\begin{bmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix}$$
Sol. Let A =
$$\begin{bmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix}$$

We know that A = I_3A (we have taken I_3 because matrix A is of order 3×3)

	2	- 3	3]		[1	0	0	
\Rightarrow	2	2	3	=	0	1	0	A
	3	- 3 2 - 2	2		0	0	1	

Let us try to make $a_{11} = 1$ Operate $R_1 \rightarrow R_1 - R_3$

$$\Rightarrow \begin{bmatrix} -1 & -1 & 1 \\ 2 & 2 & 3 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Operate $R_1 \rightarrow (-1) R_1$ to make $a_{11} = 1$

$$\Rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Operate $R_2 \rightarrow R_2 - 2R_1$ and $R_3 \rightarrow R_3 - 3R_1$ (to make $a_{21} = 0$ and $a_{31} = 0$)

$$\begin{vmatrix} 1 & 1 & -1 \\ 1 & -1 \\ 2 - 2 & 2 - 2 \\ 3 + 2 \\ 3 - 3 & -2 - 3 \end{vmatrix} = \begin{vmatrix} 0 + 2 & 1 - 0 & 0 - 2 \\ 0 + 2 & 1 - 0 & 0 - 2 \\ 0 - 0 & 1 - 3 \end{vmatrix}$$

Class 12

Class 12

 $16. \begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix}.$ **Sol.** Let $A = \begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \end{bmatrix}$ 2 5 0 We know that $A = I_3A$ $\begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$ \Rightarrow Here a_{11} is already 1. Operate $R_2 \rightarrow R_2 + 3R_1$ and $R_3 \rightarrow R_3 - 2R_1$ (to make $a_{21} = 0$ and $a_{31} = 0$) $\begin{bmatrix} 1 & 3 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $\Rightarrow |-3+3 0+9 -5-6| = |0+3 1+0 0+0| A$ $\begin{bmatrix} 2-2 & 5-6 & 0+4 \end{bmatrix} \begin{bmatrix} 0-2 & 0-0 & 1-0 \end{bmatrix}$ $\begin{bmatrix} 1 & 3 & -2 \\ 0 & 9 & -11 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \end{bmatrix} A$ \Rightarrow $\begin{vmatrix} 0 & -1 & 4 \end{vmatrix} - 2 & 0$ 1 Operate $R_2 \leftrightarrow R_3$ to make a_{22} simpler entry $\begin{bmatrix} 1 & 3 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $\begin{vmatrix} 0 & -1 & 4 \end{vmatrix} = \begin{vmatrix} -2 & 0 & 1 \end{vmatrix} A$ \Rightarrow 0 9 -11 3 1 0 Operate $R_2 \rightarrow$ (- 1) R_2 to make a_{22} = 1 $\begin{bmatrix} 1 & 3 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $\begin{vmatrix} 0 & 1 & -4 \\ 0 & 9 & -11 \end{vmatrix} = \begin{vmatrix} 2 & 0 & -1 \\ 2 & 0 & -1 \end{vmatrix} A$ \Rightarrow Operate $R_1 \rightarrow R_1 - 3R_2$ to make $a_{12} = 0$ and $R_3 \rightarrow R_3 - 9R_2$ (to make $a_{32} = 0$) $\begin{bmatrix} 1-0 & 3-3 & -2+12 \end{bmatrix} \begin{bmatrix} 1-6 & 0-0 & 0+3 \end{bmatrix}$ $0 \quad 1 \quad -4 \quad |=| \quad 2 \quad 0 \quad -1 \quad | \quad A$ \Rightarrow | **30 UET**18 1-0 0+9 9 – 9 0 cademy

 \Rightarrow

$$\begin{bmatrix} 1 & 0 & 10 \\ 0 & 1 & -4 \\ | & 0 & 0 \end{bmatrix} = \begin{bmatrix} -5 & 0 & 3 \\ 2 & 0 & A \\ | & 15 & 1 & 9 \\ -25 & 25 & 25 \end{bmatrix}$$

Operate $R_1 \rightarrow R_1 - 10R_3$, (to make $a_{13} = 0$) and $R_2 \rightarrow R_2 + 4R_3$ (to make $a_{23} = 0$).

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -5 + \frac{150}{25} & 0 - \frac{10}{25} & 3 - \frac{90}{25} \\ 0 & 25 & 25 & 25 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 - & 0 + & -1 + & A \\ 25 & 25 & 25 & 25 \end{bmatrix}$$

$$\Rightarrow I_3 = \begin{bmatrix} 1 & 25 & 25 & 25 \\ -15 & 1 & 9 \\ -2 & 4 & 11 \\ 5 & 25 & 25 & 25 \end{bmatrix}$$

$$\Rightarrow I_3 = \begin{bmatrix} 2 & 4 & 11 \\ 5 & 25 & 25 & 25 \\ -3 & 1 & 9 \\ -3 & 1 & 9 \\ -5 & 25 & 25 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$By Definition, A^{-1} = \begin{bmatrix} 5 & 1 & 0 \\ -3 & 1 & 9 \\ -5 & 25 & 25 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$By Reinition, A^{-1} = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$By Definition, A^{-1} = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$By Reinition = \begin{bmatrix} 1 & 0 & 0 \\ 0 &$$

Class 12

Chapter 3 - Matrices

18.

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 2 & 0 & -1 \\ | & 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}^{1}$$
Operate $R_{2} \rightarrow R_{2} - 2R_{1}$ to make $a_{21} = 0$. Here a_{31} is already 0

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & -2 & -5 \\ | & 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 5 & -2 & 0 \end{bmatrix} A$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$
Operate $R_{2} \leftrightarrow R_{3}$ (to make $a_{22} = 1$)
$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & -2 & -5 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$
Operate $R_{1} \rightarrow R_{1} - R_{2}$ to make $a_{12} = 0$ and $R_{3} \rightarrow R_{3} + 2R_{2}$ to make $a_{32} = 0$.
$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & -2 & -5 \end{bmatrix} = \begin{bmatrix} -2 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} A$$
Operate $R_{1} \rightarrow R_{1} - R_{2}$ to make $a_{13} = 0$ and $R_{3} \rightarrow R_{3} + 2R_{2}$ to make $a_{32} = 0$.
$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} A$$
Operate $R_{1} \rightarrow R_{1} + R_{3}$ (to make $a_{13} = 0$) and $R_{2} \rightarrow R_{2} - 3R_{3}$ (to make $a_{23} = 0$)
$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -2 + 5 & 1 - 2 & -1 + 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 5 & -2 & 2 \\ -15 & 6 & -5 \end{bmatrix} A$$

$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -3 & -1 & 5 \\ -15 & 6 & -5 \end{bmatrix} A$$

$$\begin{bmatrix} 1 & 5 & -2 & 2 \\ -15 & 6 & -5 \end{bmatrix} A$$

$$\begin{bmatrix} 1 & 5 & -2 & 2 \\ -15 & 6 & -5 \end{bmatrix} A$$

$$\begin{bmatrix} 1 & 5 & -2 & 2 \\ -15 & 6 & -5 \end{bmatrix}$$

$$A$$

$$\begin{bmatrix} 1 & 5 & -2 & 2 \\ -15 & 6 & -5 \end{bmatrix}$$

$$A$$

$$\begin{bmatrix} 1 & 5 & -2 & 2 \\ -15 & 6 & -5 \end{bmatrix}$$

$$By$$
 definition, $A^{-1} = \begin{bmatrix} -3 & -1 & 5 \\ -15 & 6 & -5 \end{bmatrix}$

$$By$$
18. Matrices A and B will be inverse of each other only if
(A) AB = BA (B) AB = BA = I
(D) $AB = BA = I$.
Sol. Option (D) *i.e.* AB = BA = I is correct answer by definition of inverse of a square matrix.

MISCELLANEOUS EXERCISE

1. Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, show that $(aI + bA)^n = a^nI + na^{n-1}bA$ where I is the identity matrix of order 2 and $n \in N$.

Sol. Step I. When n = 1, $(aI + bA)^n = a^n I + na^{n-1} bA$ $\Rightarrow (aI + bA)^1 = aI + 1a^{\circ}bA \Rightarrow aI + bA = aI + bA$ which is true. \therefore The result is true for n = 1. **Step II.** Suppose the result is true for n = k. *i.e.*, let $(aI + bA)^k = a^k I + ka^{k-1} bA$...(*i*) **Step III.** To prove that the result is true for n = k + 1. Now $(aI + bA)^{k+1} = (aI + bA) \cdot (aI + bA)^{k}$ = $(aI + bA) (a^{k}I + ka^{k-1}bA)$ [Using (*i*)] $= a^{k+1} I^{2} + ka^{k} b IA + a^{k} b AI + ka^{k-1} b^{2} A^{2}$ [By distributive property] $= a^{k+1}I + ka^{k}bA + a^{k}bA + ka^{k-1}b^{2}O.$ Γ, $|: I = I, IA = AI = A and A = |_{O} |_{O$ $=a^{k+1}I + (k+1)a^{k}bA + O = a^{k+1}I + (k+1)a^{(k+1)-1}bA$ \Rightarrow The result is true for n = k + 1. Hence, by the principle of mathematical induction, the result is true for all positive integers n. $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \text{ prove that } A = \begin{bmatrix} 3 \\ 3^{n-1} & 3^{n-1} \end{bmatrix} = \begin{bmatrix} n \\ n \\ n^{n-1} & 3^{n-1} \end{bmatrix} = \begin{bmatrix} n \\ n \\ n^{n-1} \end{bmatrix} = \begin{bmatrix} n \\ 3^{n-1} \end{bmatrix} = \begin{bmatrix} n \\ 3^{n-1} \end{bmatrix} = \begin{bmatrix} n \\ 3^{n-1} \end{bmatrix}$ 2. If $A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ **Sol.** We shall prove the result by using principle of mathematical induction. Given: A = $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$...(i) $\begin{bmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} \\ & & \\ & & \\ 1^{n-1} & n^{n-1} & n^{n-1} \end{bmatrix}$ Let P(n): Aⁿ = $\begin{bmatrix} 3 & 3 & 3 \end{bmatrix}$...(*ii*) $|3^{n-1} 3^{n-1} 3^{n-1}|$ **Step I.** Putting n = 1 in (*ii*),

Therefore, P(1): A = $\begin{vmatrix} 3^{0} & 3^{0} & 3^{0} \\ 3^{0} & 3^{0} & 3^{0} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix}$

which is given to be true in CUET \therefore P(1) is true *i.e.*, Equivalent Ascademy n = 1.

$$\lfloor 3^{k-1} \ 3^{k-1} \ 3^{k-1} \rfloor$$

Class 12

Step III. Multiplying corresponding sides of eqn. (iii) by eqn. (i) $A^{k} \cdot A^{1} = \begin{vmatrix} 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1} \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 3^{k-1} & 3^{k-1} \end{vmatrix}$ Performing row by column multiplication on right side $\begin{bmatrix} 3^{k-1} + 3^{k-1} + 3^{k-1} & 3^{k-1} + 3^{k-1} + 3^{k-1} + 3^{k-1} + 3^{k-1} & 3^{k-1} + 3^{k-1} + 3^{k-1} \\ 3^{k-1} + 3^{k-1} + 3^{k-1} & 3^{k-1} + 3^{k-1} + 3^{k-1} \end{bmatrix}$ $\Rightarrow A^{k+1} =$ $\left\lfloor 3^{k-1} + 3^{k-1} \right\rfloor$ $\Rightarrow A^{k+1} = \begin{vmatrix} 3^{k}_{k} & 3^{k}_{k} & 3^{k}_{k} \\ | 3 & 3 & 3 \end{vmatrix} \\ | k & k & k \\ | 3 & 3 & 3 | | \end{vmatrix}$ $(\because 3^{k-1} + 3^{k-1} + 3^{k-1} = 3 \cdot 3^{k-1} (\because x + x + x = 3x)$ $= 3^{1} \cdot 3^{k-1} = 3^{1+k-1} = 3^{k}$ \therefore Eqn. (ii) is true for n = k + 1 (\because on putting n = k + 1 in (ii), we get the above equation) *i.e.*, P(k + 1) is true \therefore P(n) **j**.e., **4 q**n. (*ii*) is true for all nat**\psita**l**2n** by P.M.I. , then prove that $A^n = \begin{bmatrix} -4n \\ n \end{bmatrix}$ where 3. If A = *n* is any positive integer. **Sol.** We prove the result by mathematical induction. **Step I.** When n = 1, $A^n = \begin{bmatrix} 1 + 2n & -4n \end{bmatrix}$...(i) 1- 2n $\Rightarrow A^{1} = \begin{bmatrix} 1+2 & -4 \end{bmatrix}$ $\begin{vmatrix} 1 & 1-2 \end{vmatrix}$ or $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$ which is true. \Rightarrow The result is true for n = 1. **Step II.** Suppose that equation (*i*) is true for n = k, [1+2k −4k] *i.e.*, let $A = |_{k}$ 1 - 2k ...(*ii*) **Step III.** To prove the structure for n = k + 1, we have

Performing row by column multiplication, $= \begin{bmatrix} 3+6k-4k & -4-8k+4k \\ 3k+1-2k & -4k-1+2k \end{bmatrix} = \begin{bmatrix} 3+2k & -4-4k \\ 1+k & -1-2k \end{bmatrix}$ which is the same as (iii). \Rightarrow The result is true for n = k + 1. Hence, by the principle of mathematical induction, the result is true for all positive integers n. 4. If A and B are symmetric matrices, prove that AB - BA is a skew symmetric matrix. Sol. A and B are symmetric matrices A' = A and B' = B \Rightarrow ...(i) Now (AB - BA)' = (AB)' - (BA)' [: (P - Q)' = P' - Q'] = B'A' - A'B'[Reversal Law] = BA - AB [Using (i)] = - (AB - BA) \therefore (AB – BA) is a skew symmetric matrix. 5. Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric. (B'AB)' = [B'(AB)]'Sol. Now, = (AB)'(B')' $[\cdots \quad (CD)' = D'C']$...(*i*) [:: (CD)' = D'C'] (B'AB)' = B'A'Bor Case I. A is a symmetric matrix $\therefore A' = A$ Putting A' = A in equation (i), (B'AB)' = B'AB \therefore B'AB is a symmetric matrix. Case II. A is a skew symmetric matrix. $\therefore A' = -A$ Putting A' = -A in equation (i), (B'AB)' = B'(-A)B = -B'AB∴ B'AB is a skew symmetric matrix. 6. Find the values of x, y, z if the matrix $A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ y & -z \end{bmatrix}$ satisfies the equation A'A = I. $\begin{vmatrix} x & -y & z \end{vmatrix}$ Sol. Given: A = $\begin{vmatrix} 0 & 2y & z \\ x & y & -z \end{vmatrix}$. $\begin{bmatrix} x & -y & z \end{bmatrix}$ $\begin{bmatrix} 0 & 2y & z \end{bmatrix}' \begin{bmatrix} 0 & x \end{bmatrix}$ Therefore, $A' = \begin{vmatrix} x & y & -z \end{vmatrix} = \begin{vmatrix} 2y & y & -y \end{vmatrix}$ $\begin{vmatrix} & & | & | \\ x - y & z \end{vmatrix} \quad \begin{vmatrix} z & -z & z \end{vmatrix}$ \therefore A'A = I (given)

Class 12

(Here I is I_3 because) matrices A and A' are matrices of order 3×3) $\begin{bmatrix} 0 + x^2 + x^2 & 0 + xy - xy & 0 - xz + xz \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}$ 0 $\Rightarrow \begin{vmatrix} 0 + xy - xy & 4y^2 + y^2 + y^2 & 2yz - yz - yz \\ 0 - zx + zx & 2yz - yz - yz & z^2 + z^2 + z^2 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ $\begin{bmatrix} 2x^2 & 0 & 0 \\ 0 & 6y^2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ $0 0 3z^2$ 0 0 1Equating corresponding entries, we have $3z^2 = 1$ $z^2 = 3$ $2x^2 = 1$, $6y^2 = 1$, $\Rightarrow x^2 = \frac{1}{2}, \qquad y^2 = \frac{1}{2},$ $\Rightarrow x = \pm \sqrt{\frac{1}{2}}, \qquad y = \pm \sqrt{\frac{1}{6}}, \qquad z = \pm \sqrt{\frac{1}{3}}$ $\therefore \quad x = \pm \frac{1}{\sqrt{2}},$ $y = \pm \frac{1}{\sqrt{6}}, \qquad z = \pm \frac{1}{\sqrt{3}}$ 7. For what value of x, $\begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 0$? Sol. Given: $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 0$ Orders 1×3 Orders 1×3 3×3 3×1 Multiplying first matrix with second matrix. 3×3 3×1 $\Rightarrow [1+4+1 \quad 2+0+0 \quad 0+2+2] \begin{vmatrix} 0 \\ 2 \\ x \end{vmatrix} = 0$ $\Rightarrow \begin{bmatrix} 6 & 2 & 4 \end{bmatrix} \begin{vmatrix} \ \ 0 \\ \ 2 \\ \end{vmatrix} = 0$ $1 \times 3 \qquad 3 \times 1$ $\Rightarrow [0 + 4 + 4x]_{1 \times 1} = 0$ Equating corresponding of the end of

$$\Rightarrow x = \frac{4}{4} = -1.$$

8. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 - 5A + 7I = 0.$

Class 12

Sol. Given:
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$

 $A^{2} = A. A = \begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 9 - 1 & 3 + 2 \\ -3 - 2 & -1 + 4 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$
L.H.S. $A^{2} - 5A + 7I = A^{2} - 5A + 7I_{2}$
[: ` A is 2 × 2, therefore I is I₂]
 $\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} 15 & 5 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} 15 & 5 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} -7 & 0 \\ 1 & -5 + 5 & 3 - 10 \end{bmatrix} = \begin{bmatrix} -7 + 7 & 0 + 0 \\ -5 + 5 & 3 - 10 \end{bmatrix} = \begin{bmatrix} 0 & 7 \\ 0 & 7 \end{bmatrix}$
 $= \begin{bmatrix} -7 & 0 \\ 1 & 7 \end{bmatrix} = \begin{bmatrix} -7 + 7 & 0 + 0 \\ -7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix}$
9. Find x, if $\begin{bmatrix} x & -5 & -1 \\ 2 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$
 \downarrow order 1 × 3 order 3 × 3 order 3 × 1
 $\Rightarrow \begin{bmatrix} x - 2 & -10 & 2x - 8 \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ y \end{bmatrix}$

Class 12

 $\Rightarrow [x^2 - 2x - 40 + 2x - 8] = 0 \Rightarrow [x^2 - 48]_{1 \times 1} = [0]_{1 \times 1}$

Equating corresponding entries, $x^2 - 48 = 0$

$$\Rightarrow \quad x^2 = 48 \quad \Rightarrow \quad x = \pm \sqrt{48} = \pm \sqrt{16 \times 3} = \pm 4\sqrt{3} \; .$$

10. A manufacturer produces three products *x*, *y*, *z* which he sells in two markets. Annual sales are indicated below: Market Products

arket	Products					
Ι	10,000	2,000	18,000			
II	6,000	20,000	8,000			

- (a) If unit sale prices of x, y and z are 2.50, 1.50 and 1.00, respectively, find the total revenue in each market with the help of matrix algebra.
- (b) If the unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectivley. Find the gross profit.

Sol. The matrix showing the production of the three items in market I and II can be shown by a 2×3 matrix.

Let A be this matrix, then

$$A = \begin{bmatrix} x & y & z \\ II \begin{bmatrix} 10,000 & 2,000 & 18,000 \\ 6,000 & 20,000 & 8,000 \end{bmatrix}_{2\times}$$

(a) Let B be the column matrix representing sale price of each unit of products *x*, *y*, *z*.

Then $B = \begin{bmatrix} 2.5 \\ 1.5 \\ 1 \end{bmatrix}_{3 \times 1}$

We know that revenue (= sale price × number of items sold) In matrix form,

$$\begin{bmatrix} \text{Revenue matrix} \\ 2 \times 1 \\ 2 \times 1 \\ \text{Revenue from Market II} \\ \text{Revenue from Market II} \\ = \begin{bmatrix} 10,000 & 2,000 & 18,000 \\ 6,000 & 20,000 & 8,000 \end{bmatrix} | 1.5 \\ 1.5$$

Equating corresponding entries, we have the revenue collected by sale of all items in Market I = 46,000 and the revenue collected by sale of all items in Market II = 53,000.

(b) Let the cost matrix showing the cost of each unit of products *x*, *y*, *z* be given by the column matrix C (say)

$$C = \begin{bmatrix} 2 \\ 1 \\ 0.5 \end{bmatrix}_{3\times}$$

Thus, the total cost of three items for each market is given by: (In general form) [Cost matrix] = AC

$$= \begin{bmatrix} 20,000 + 2,000 + 9,000 \\ 12,000 + 20,000 + 4,000 \end{bmatrix}_{2 \times 1} = \begin{bmatrix} 31,000 \\ 36,000 \end{bmatrix}$$

... The profit collected in two markets is given in matrix form as Profit matrix = Revenue matrix - Cost matrix

=	[46,000]	_ [31,000	[15,000	
	53,000		36,000		17,000	

Hence, the gross profit in both the markets

 \therefore n = 2 (because numbers of columns in pre-matrix of product must be equal to number of rows in post matrix) and so L.H.S. matrix is of order $m \times 3$. Again R.H.S. matrix is of order 2×3 . Therefore, m = 2 (By definition of equal matrices) \therefore Therefore, matrix X is of order $m \times n$ *i.e.*, 2×2 .

Let

 $\mathbf{X} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

...(ii)

Putting this value of X in eqn. (i),

	[a	$b \rceil \lceil 1$	2	3]_	[-7	- 8	- 9]
	c	$d \mid 4$	5	6	2	4	6
	L	Ţ			L		
\rightarrow	$\lceil a+4b \rceil$	2a + 5b	3a +	6b]	[-7	- 8	- 9]
	c+4d	2a + 5b $2c + 5d$	3 <i>c</i> +	6d	2	4	6
		1.					

Equating corresponding entries, we have

a + 4b = -7 ...(iii) 2a + 5b = -8 ...(iv) 3a + 6b = -9 ...(v) c + 4d = 2...(vi) 2c + 5d = 4...(vii) ...(*v*) 3c + 6d = 6...(viii) Let us solve eqns. (iii) and (iv) for a and b Eqn. (*iii*) \times 2 gives Eqn. (iv) is <u> </u>
caděmy

Class 12

Chapter 3 - Matrices

Putting b = -2 in (iii), $a - 8 = -7 \Rightarrow a = -7 + 8 = 1$ Putting a = 1 and b = -2 in eqn. (v), 3 - 12 = -9

 \Rightarrow -9 = -9 which is true. \therefore values of a = 1 and b = -2 exist. Now let us solve eqns. (vi) and (vii) for c and d. Eqn. $(vi) \times 2$ gives 2c + 8d = 4Eqn. (vii) is 2c + 5d = 4- - -3d = 0 $\Rightarrow d = \frac{0}{3} = 0$ Subtracting, Putting d = 0 in (vi), c = 2Putting c = 2 and d = 0 in (viii), 6 = 6 which is true. \therefore values of c = 2 and d = 0 exist. Putting these values of *a*, *b*, *c*, *d* in (*ii*), matrix $X = \begin{bmatrix} 1 & -2 \end{bmatrix}$ 12. If A and B are square matrices of the same order such that AB = BA, then prove by induction that A $B^n = B^n A$. Further, prove that $(AB)^n = A^n B^n$ for all $n \in N$. Sol. Given: AB = BA ...(i) Let P(n): $AB^n = B^n A$...(*ii*) We have been asked to prove eqn. (ii) by P.M.I. (Even if not asked, we would have proved it by P.M.I.) **Step I. For** n = 1. From eqn. (*ii*), P(1) : becomes AB = BA which is given to be true by eqn. (i) \therefore P(1) is true *i.e.*, eqn. (*ii*) is true for n = 1**Step II.** Let P(k) be true *i.e.*, eqn. (*ii*) is true for n = k. \therefore Putting n = k in (ii), we have $AB^k = B^k A$...(*iii*) Step III. Post-multiplying both sides of eqn. (iii) by B, We have $AB^kB = B^kAB$ or A, $B^{k+1} = B^k A B$ Putting AB = BA from (i) in R.H.S., we have $A B^{k+1} = B^{k}BA \Longrightarrow AB^{k+1} = B^{k+1}A$ \therefore Eqn. (ii) is true for n = k + 1(:: On putting n = k + 1 in (*ii*), we get the above result) \therefore P(k + 1) is true. \therefore P(n) *i.e.*, eqn. (*ii*) is true for all $n \in \mathbb{N}$ by P.M.I. 13. If $\mathbf{A} = \begin{bmatrix} \alpha & \beta \end{bmatrix}$ is such that $\mathbf{A}^2 = \mathbf{I}$; then $\begin{vmatrix} \gamma & -\alpha \end{vmatrix}$ (A) 1 + α^2 + $\beta\gamma$ = 0 **(B)** $1 - \alpha^2 + \beta \gamma = 0$ (C) $1 - \alpha^2 - \beta \gamma = 0$ (D) $1 + \alpha^2 - \beta \gamma = 0$. **Sol.** Given: $A = \begin{bmatrix} \alpha & \beta \end{bmatrix}$ and $A^2 = I (= I) \parallel \because A$ is 2×2 $\begin{array}{ccc} \alpha & \beta \\ \mathbf{m}\mathbf{y} & -\alpha \end{array} \right| = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$ \Rightarrow A.A = I \Rightarrow

$$\Rightarrow \begin{bmatrix} \alpha^{2} + \beta\gamma & \alpha\beta - \alpha\beta \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \alpha\gamma - \gamma\alpha & \beta\gamma + \alpha^{2} \\ \alpha^{2} + \beta\gamma & 0 \\ 0 & \alpha^{2} + \beta\gamma \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

Equating corresponding entries, we have $\alpha^{2} + \beta\gamma = 1$
 $\therefore 1 - \alpha^{2} - \beta\gamma = 0$.
Therefore, option (C) is the correct answer.
14. If the matrix A is both symmetric and skew symmetric, then
(A) A is a diagonal matrix (B) A is a zero matrix
(C) A is a square matrix (D) None of these.
Sol. Because A is symmetric, therefore A' = A ...(i)
Because A is skew-symmetric, therefore A' = - A ...(ii)
Putting A' = A from (i) in (ii), $A = -A \Rightarrow A + A = 0$
 $\Rightarrow 2A = 0 \Rightarrow A = \frac{0}{2} = 0$
i.e., A is a zero matrix. ... Option (B) is correct answer.
Note: It may be noted that if A and B are square matrices of the same order, then
 $(A + B)^{2} = A^{2} + B^{2} + 2AB$ and also $(A + B)^{3} = A^{3} + B^{3} + 3AB(A + B)$
15. If A is a square matrix such that $A^{2} = A$, then $(I + A)^{3} - 7A$
is equal to
 $(A) A$ (B) $I - A$ (C) I (D) 3A.
Sol. Given: $A^{2} = A$...(*i*)
Multiplying both sides by A, $A^{3} = A^{2} = A$ (By (*i*))(*i*)
The given expression = $(I + A)^{3} - 7A$
 $= I^{3} + A^{3} + 3I^{2}A + 3IA^{2} - 7A$
Putting $A^{2} = A$ from (*i*) and $A^{3} = A$ from (*i*) and I $I^{3} = I$ and $I^{2} = I$ (Because $I^{2} = I$ always for all $n \in N$)
 $= I + A + 3A + 3A - 7A$ (: AI = A and IA = A)
 $= I + 7A - 7A = I$

Hence, option (C) is the correct answer.

