Exercise 3.1

1. In the matrix $\mathbf{A}=\left[\begin{array}{rrrr}2 & 5 & 19 & -7 \\ 35 & -2 & 5 / 2 & 12 \\ \lfloor\sqrt{3} & 1 & -5 & 17\end{array}\right]$, write
(i) The order of the matrix (ii) The number of elements
(iii) Write the elements $a_{13}, a_{21}, a_{33}, a_{24}, a_{23}$.

Sol. (i) There are 3 horizontal lines (rows) and 4 vertical lines (columns) in the given matrix A .
\therefore Order of the matrix A is $\mathbf{3} \times \mathbf{4}$.
(ii) The number of elements in this matrix A is $3 \times 4=12$.
$(\because$ The number of elements in a $m \times n$ matrix is $m . n$)
(iii) $a_{13} \Rightarrow$ Element in first row and third column $=19$
$a_{21} \Rightarrow$ Element in second row and first column $=35$
$a_{33} \Rightarrow$ Element in third row and third column $=-5$
$a_{24} \Rightarrow$ Element in second row and fourth column $=12$
$a_{23} \Rightarrow$ Element in second row and third column $=\frac{5}{2}$.
2. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?
Sol. We know that a matrix having $m n$ elements is of order $m \times n$.
(i) Now $24=1 \times 24,2 \times 12,3 \times 8,4 \times 6$ and hence

$$
=24 \times 1,12 \times 2,8 \times 3,6 \times 4 \text { also. }
$$

\therefore There are 8 possible matrices having 24 elements of orders $1 \times 24,2 \times 12,3 \times 8,4 \times 6,24 \times 1,12 \times 2,8 \times 3,6 \times 4$.
(ii) Again (prime number) $13=1 \times 13$ and 13×1 only.
\therefore There are 2 possible matrices of order 1×13 (Row matrix) and 13×1 (Column matrix)
3. If a matrix has 18 elements, what are the possible orders it can have? What if has 5 elements?
Sol. We know that a matrix having $m n$ elements is of order $m \times n$.
(i) Now $18=1 \times 18,2 \times 9,3 \times 6$ and hence $18 \times 1,9 \times 2$, 6×3 also.
\therefore There are 6 possible matrices having 18 elements of orders $1 \times 18,2 \times 9,3 \times 6,18 \times 1,9 \times 2$ and 6×3.
(ii) Again (Prime number) $5=1 \times 5$ and 5×1 only.
\therefore There are 2 possible matrices of order 1×5 and 5×1.
4. Construct a 2×2 matrix $A=\left[a_{i j}\right]$ whose elements are given by:
(i) $a_{i j}=\frac{(i+j)^{2}}{2}$
(ii) $a_{i j}=\underline{i}$
(iii) $a_{i j}=\frac{(i+2 j)^{2}}{2}$

j

Sol. To construct a 2×2 matrix $\mathrm{A}=\left[a_{i j}\right]$
(i) Given: $a_{i j}=\frac{(i+j)^{2}}{2}$

In (i),

$$
\text { Put } i=1, j=1, \quad \therefore \quad a_{11}=\frac{(1+1)^{2}}{2}=\frac{2^{2}}{2}=\frac{4}{2}=2
$$

$$
\text { Put } i=1, j=2, \quad \therefore \quad a_{12}=\frac{(1+2)^{2}}{2}=\frac{3^{2}}{2}=\frac{9}{2}
$$

$$
\text { Put } i=2, j=1 ; \quad \therefore \quad a_{21}=\frac{(2+1)^{2}}{2}=\frac{9}{2}
$$

$$
\text { Put } i=2, j=2 ; \quad \therefore \quad a_{22}=\frac{(2+2)^{2}}{2}=\frac{4^{2}}{2}=\frac{16}{2}=8
$$

$$
\therefore \quad \mathrm{A}_{2 \times 2}=\left[a_{i j}\right]=\left\lceil\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}=\left\lceil\begin{array}{ll}
2 & 9 \\
9 & 2
\end{array}\right\rceil .\right.
$$

$$
\begin{equation*}
\rfloor \quad\left\lfloor\left\lfloor_{2}{ }^{8}\right\rfloor\right. \tag{i}
\end{equation*}
$$

(ii) Given: $a_{i j}=\frac{i}{j}$

In (i),

$$
\begin{aligned}
& \text { Put } i=1, j=1, \quad \therefore \quad a_{11}=\frac{1}{1}=1 \\
& \text { Put } i=1, j=2, \quad \therefore \quad a_{12}=\frac{1}{2} \\
& \text { Put } i=2, j=1 ; \quad \therefore \quad a_{21}=\frac{\underline{2}}{1}=2 \\
& \text { Put } i=2, j=2 ; \quad \therefore \quad a_{22}=\frac{2}{2}=1 \\
& \left\lceil\begin{array}{ll}
a_{11} & a_{12} \\
& \lceil 2 \\
2
\end{array}\right\rceil \\
& \therefore \quad \mathrm{A}_{2 \times 2}=\left[a \text { PCUET }=\left.\right|_{2} ^{2} \mid\right. \text {. }
\end{aligned}
$$

(iii) Given: $a_{i j}=\frac{(i+2 j)^{2}}{2}$

In (i),

$$
\begin{array}{ll}
\text { Put } i=1, j=1 ; & \therefore \quad a_{11}=\frac{(1+2)^{2}}{2}=\frac{3^{2}}{2}=\frac{9}{2} \\
\text { Put } i=1, j=2 ; & \therefore \quad a_{12}=\frac{(1+4)^{2}}{2}=\frac{5^{2}}{2}=\frac{25}{2} \\
\text { Put } i=2, j=1 ; & \therefore \quad a_{21}=\frac{(2+2)^{2}}{2}=\frac{16}{2}=8 \\
\text { Put } i=2, j=2 ; & \therefore \quad a=\frac{(2+4)^{2}}{2}=6^{2}=\frac{36}{}=18
\end{array}
$$

$$
\left\lceil\begin{array}{ll}
a_{11} & a_{12}
\end{array}\right\rceil \quad\left\lceil\begin{array}{cc}
22 & 25 \\
\hline
\end{array}\right] \quad 2 \quad 2
$$

$$
\therefore \quad \mathrm{A}_{2 \times 2}=\left[a_{i j}\right]=\begin{array}{ll}
a & a \\
\lfloor 21 & 22
\end{array}\left|=\left|\begin{array}{cc}
2 & 2 \\
8 & 18
\end{array}\right| .\right.
$$

5. Construct a 3×4 matrix, whose elements are given by:

$$
\begin{array}{ll}
\text { (i) } a_{i j}=\frac{1}{2} & |-3 i+j| \\
\text { (ii) } a_{i j}=2 i-j
\end{array}
$$

Sol. (i) To construct a 3×4 matrix say A.

$$
\begin{equation*}
\text { Given: } a_{i j}=\frac{1}{2}|-3 i+j| \tag{i}
\end{equation*}
$$

In (i),

$$
\begin{aligned}
& \quad \text { Put } i=\frac{1}{1}, j=1, \\
& \therefore \quad a_{11}=\frac{1}{2}|-3+1|=\frac{1}{2}|-2|=\frac{1}{2}(2)=1,
\end{aligned}
$$

$$
\text { Put } i=1, j=2
$$

$$
\therefore \quad a_{12}=\frac{1}{2}|-3+2|=\frac{1}{2}|-1|=\frac{1}{2}(1)=\frac{1}{2}
$$

$$
i=1, j=3
$$

$$
\therefore \quad a_{13}=\stackrel{\underline{1}}{ }|-3+3|=\underline{\underline{\mathbf{1}}}|\mathrm{o}|{ }^{\underline{\mathbf{1}}}(\mathrm{o})=\mathrm{o}
$$

$$
\begin{array}{llll}
2 & 2 & 2
\end{array}
$$

$$
i=1, j=4
$$

$$
\therefore \quad a_{14}=\frac{1}{2}|-3+4|=\frac{1}{2}|1|=\frac{1}{2}(1)=\frac{1}{2}
$$

$$
i=2, j=1
$$

$$
\therefore \quad a_{21}=\frac{1}{2}|-6+1|=\frac{1}{2}|-5|=\begin{aligned}
& 5 \\
& 2
\end{aligned}
$$

$$
i=2, j=2
$$

$$
\left.\therefore \quad a_{22}=\frac{1}{2} \right\rvert\, \text { - }{ }_{2} \text { ACUE } \frac{1}{T}|-4|=\begin{gathered}
4 \\
2
\end{gathered}=2
$$

$$
\begin{aligned}
& \begin{aligned}
i & =2, j=3, \\
\therefore \quad a_{23} & =\frac{1}{2}|-6+3|=\frac{1}{2}|-3|=\begin{array}{l}
3 \\
2
\end{array}, ~
\end{aligned} \\
& \begin{aligned}
i= & \underset{2}{\underline{1}} j=4, \\
\therefore \quad a_{24} & =-6+4\left|=\frac{1}{2}\right|-2 \left\lvert\,=\frac{\underline{2}}{2}=1\right.
\end{aligned}
\end{aligned}
$$

$$
\left.\left\lceil\begin{array}{llll}
a & a & a & a
\end{array}\right\rceil \quad \left\lvert\, \begin{array}{llll}
1 & \frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right.\right\rceil
$$

$$
\therefore \quad \mathrm{A}_{3 \times 4}=\left|\begin{array}{rrrr}
11 & 12 & 13 & 14 \\
a_{21} & a_{22} & a_{23} & a_{24}
\end{array}\right|=\left\lvert\, \begin{array}{lll}
\left|\begin{array}{lll}
5 & 3 & \mid \\
& 2 &
\end{array}\right| . ~
\end{array}\right.
$$

$$
\begin{aligned}
\left\lfloor\begin{array}{llll}
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right\rfloor & \left|\begin{array}{llll}
2 & & 2 & \\
4 & 7 & 3 & 5
\end{array}\right| \\
& \left.\begin{array}{llll}
& 2 & & 2
\end{array}\right\rfloor
\end{aligned}
$$

(ii) Given: $a_{i j}=2 i-j$

$$
\left.\begin{array}{ll}
\therefore & a_{11}=2-1=1,
\end{array} \quad \begin{array}{ll}
a_{12}=2-2=0 \\
a_{13}=2-3=-1, & a_{14}=2-4=-2 \\
a_{21}=4-1=3, & a_{22}=4-2=2
\end{array}\right)
$$

6. Find the values of x, y and z from the following equations:
(i) $\left.\begin{array}{cc}\lceil 4 & 3\rceil \\ \left|\begin{array}{ll}x & 5\end{array}\right|\end{array}=\begin{array}{ll}\lceil y & z \\ \mid & 5\end{array} \right\rvert\,$
$\lceil x+y+z\rceil\lceil 9\rceil$
(ii) $\left|\begin{array}{cc}x+y & 2 \\ & 5+z \\ \hline\end{array}\right|=\begin{array}{ll}{\left[\begin{array}{ll}6 & 2\rceil\end{array}\right.} \\ \left|\begin{array}{ll}5 & 8\end{array}\right|\end{array}$
(iii) $|x+z|=$

$$
\begin{aligned}
& \begin{aligned}
i= & 3, j=1, \\
\therefore \quad a_{31} & =\frac{1}{2}|-9+1|=\frac{1}{2}|-8|=\frac{8}{2}=4
\end{aligned} \\
& i=3, j=2, \\
& \therefore \quad a_{32}=\frac{1}{2}|-9+2|=\frac{1}{2}|-7|=\begin{array}{l}
7 \\
2
\end{array} \\
& i=3, j=3, \\
& \therefore \quad a_{33}=\frac{1}{2}|-9+3|=\frac{1}{2}|-6|=\frac{6}{2}=3 \\
& i=3, j=4 \text {, } \\
& \therefore \quad a_{34}=\frac{1}{2}|-9+4|=\frac{1}{2}|-5|=\begin{array}{r}
5 \\
2
\end{array}
\end{aligned}
$$

$$
\lfloor y+z\rfloor\lfloor 7\rfloor
$$

Sol. (i) Given: $\left.\begin{array}{r}{\left[\begin{array}{ll}4 & 3 \\ \lfloor & \\ x & 5\end{array}\right\rfloor}\end{array}=\begin{array}{ll}y & z \\ \hline & \\ \hline & 5\end{array}\right]$
By definition of Equal matrices, equating corresponding entries, we have $4=y, 3=z, x=1,5=5$ $\therefore x=1, y=4, z=3$.

(ii) Given: $\left\lceil\begin{array}{ll}x+y & 2\end{array}\right\rceil=$| 6 | 2 |
| :--- | :--- |

$$
\left\lfloor\begin{array}{cc}
5+z & x y \\
\hline
\end{array} \quad\left\lfloor\begin{array}{ll}
5 & 8
\end{array}\right\rfloor\right.
$$

Equating corresponding entries, we have

$$
\begin{align*}
x+y & =6 \tag{i}\\
5+z & =5 \quad \text { i.e., } \quad z=5-5=0 \\
\text { and } \quad x y & =8 \tag{ii}
\end{align*}
$$

Let us solve (i) and (ii) for x and y.
From (i), $y=6-x$
Putting this value of y in (ii), we have

$$
x(6-x)=8 \quad \text { or } \quad 6 x-x^{2}=8
$$

or $\quad-x^{2}+6 x-8=0$ or $\quad x^{2}-6 x+8=0$
or $\quad x^{2}-4 x-2 x+8=0$ or $x(x-4)-2(x-4)=0$
or $\quad(x-4)(x-2)=0$
\therefore Either $x-4=0$ or $x-2=0$
i.e., $x=4$ or $x=2$.

When $x=4$, then $\quad y=6-x=6-4=2$
$\therefore x=4, y=2, z=0$.
When $x=2$, then $\quad y=6-x=6-2=4$
$\therefore x=2, y=4, \quad z=0$.
(iii) Given:

$$
\left.\begin{array}{c}
\left|\begin{array}{c}
x+y+z \\
x+z
\end{array}\right| \\
\left\lfloor\begin{array}{c}
9 \\
y+z
\end{array}\right] \\
5 \\
7
\end{array}\right]
$$

Equating corresponding entries, we have

$$
\begin{array}{r}
x+y+z=9 \\
x+z=5 \\
y+z=7 \tag{iii}
\end{array}
$$

Eqn. (i) - eqn. (ii) gives $y=9-5=4$
Eqn. (i) - eqn. (iii) gives $x=9-7=2$
Putting $x=2$ and $y=4$ in (i), $2+4+z=9$
or

$$
6+z=9
$$

$\therefore \quad z=3$
Hence $\quad x=2, y=4, z=3$.
7. Find the values of a, b, c and d from the equation

$$
\left[\begin{array}{cc}
a-b & 2 a+c \\
2 a-b & 3 c+d
\end{array}\right\rfloor=\left[\left.\begin{array}{rr}
-1 & 5 \\
0 & 13
\end{array} \right\rvert\, \cdot\right.
$$

Sol. Equating corresponding entries of given equal matrices, we have

$$
\begin{align*}
a-b & =-1 \tag{i}\\
2 a-b & =0 \tag{ii}\\
2 a+c & =5 \tag{iii}\\
3 c+d & =13 \tag{iv}
\end{align*}
$$

and
Eqn. (i) - eqn. (ii) gives $-a=-1$ or $a=1$
Putting $a=1$ in (i), $\quad 1-b=-1$ or $-b=-2$ or $b=2$
Putting $a=1$ in (iii), $2+\mathbf{C} \overline{\mathbf{P}} \mathbf{E} \overrightarrow{\mathbf{T}} \quad c=5-2=3$
Putting $c=3$ in (iv),

$$
\therefore \quad a=1, b=2, c=3, d=4 .
$$

8. $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$ is a square matrix, if
(A) $m<n$
(B) $m>n$
(C) $m=n$
(D) None of these.

Sol. (C) is the correct option.
$(\because$ By definition of square matrix $m=n$)
9. Which of the given values of x and y make the following pair of matrices equal

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
3 x+7 & 5 \\
y+1 & 2-3 x
\end{array} \left\lvert\,, \begin{array}{cc}
\lceil 0 & y-2\rceil \\
\lfloor & \rfloor
\end{array}\right.\right]}
\end{aligned}
$$

(A) $x=\frac{-1}{3}, y=7$
(B) Not possible to find
(C) $y=7, x=-2$
(D) $x=\frac{-1}{}, y=\frac{-2}{}$.
3
33

Sol. According to given, matrix $\lceil 3 x+7 \quad 5 \quad\rceil=$ matrix $\lceil 0 \quad y-2\rceil$

Equating corresponding entries, we have
$3 x+7=0 \quad \Rightarrow \quad 3 x=-7 \quad \Rightarrow \quad x=-\begin{aligned} & Z \\ & 3\end{aligned}$
$\begin{array}{rllll}5 & =y-2 & \Rightarrow & 5+2 & =y \quad \\ y+1 & =8 & \Rightarrow & y & =8-1=7\end{array}$
and $2-3 x=4 \quad \Rightarrow \quad-3 x=2 \quad \Rightarrow \quad x=-\frac{2}{3}$
The two values of $x=-\begin{array}{r}Z \\ 3\end{array}$ given by (i) and $x=-\frac{\underline{2}}{3}$ given by (ii)
are not equal.
\therefore No values of x and y exist to make the two matrices equal.
\therefore Option (B) is the correct answer.
10. The number of all possible matrices of order 3×3 with each entry 0 or 1 is:
(A) 27
(B) 18
(C) 81
(D) 512 .

Sol. We know that general matrix of order 3×3 is

$$
\begin{aligned}
& \left\lceil\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22}
\end{array}\right. \\
& \left\lfloor\begin{array}{lll}
a_{21} & a_{32} & a_{33}
\end{array}\right\rfloor
\end{aligned}
$$

This matrix has $3 \times 3=9$ elements.
The number of choices for a_{14} is (as o or 1 can be used) Similarly, the numbersorcadernych other element is 2.

Hence, total possible arrangements (matrices)

$$
=\frac{2 \times 2 \times \ldots \times 2}{9 \text { times }} \quad(\text { By fundamental principle of counting })
$$

$=2^{9}=512$
\therefore Option (D) is the correct answer.

Exercise 3.2

Find each of the following:
(i) $\mathbf{A}+\mathrm{B}$
(ii) $\mathrm{A}-\mathrm{B}$
(iii) 3A-C
(iv) $A B$
(v) BA.

Sol.
(i) $\mathrm{A}+\mathrm{B}=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]+\left[\begin{array}{rr}1 & 3 \\ -2 & 5\end{array}\right]=\left[\begin{array}{ll}2+1 & 4+3 \\ 3-2 & 2+5\end{array}\right]=\left[\begin{array}{ll}3 & 7 \\ 1 & 7\end{array}\right]$
(ii) $\quad \mathrm{A}-\mathrm{B}=\left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right]-\left\lceil\begin{array}{cc}1 & 3 \\ \hline & 2\end{array}\right]=\left[\begin{array}{ll}2-1 & 4-3 \\ \hline-2 & 5\end{array}\right]=\left[\begin{array}{cc}1 & 1 \\ L_{3}+2 & 2-5\end{array}\right]$
(iii) $3 \mathrm{~A}-\mathrm{C}=3\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]-\mathrm{C}=\left[\begin{array}{ll}3 \times 2 & 3 \times 4 \\ 3 \times 3 & 3 \times 2\end{array}\right]-\mathrm{C}$

(iv)
$\mathrm{AB}=$
Performing row by column multiplication, $=\left[\begin{array}{ll}2(1)+4(-2) & 2(3)+4(5) \\ 3(1)+2(-2) & 3(3)+2(5)\end{array}\right] \left\lvert\,=\left[\begin{array}{ll}2-8 & 6+20 \\ 3-4 & 9+10\end{array}\right]=\left[\begin{array}{ll}-6 & 26 \\ -1 & 19\end{array}\right]\right.$
(v)

$$
\mathrm{BA}=\left[\begin{array}{rr}
1 & 3 \\
-2 & 5
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
3 & 2
\end{array}\right]
$$

Performing row by column multiplication,

$$
=\left[\begin{array}{cc}
1(2)+3(3) & 1(4)+3(2) \\
(-2) 2+5(3) & (-2)(4)+5(2)
\end{array} \left\lvert\,=\left[\begin{array}{cc}
2+9 & 4+6 \\
-4+15 & -8+10
\end{array}\right]=\left[\begin{array}{cc}
11 & 10 \\
11 & 2
\end{array}\right]\right.\right.
$$

Note. From solutions of part (iv) and (v), we can easily observe that AB need not be equal to BA i.e., matrix multiplication need not be commutative.

2. Compute the following:

(i)
$\left[\begin{array}{rr}\boldsymbol{a} & \boldsymbol{b} \\ -\boldsymbol{b} & \boldsymbol{a}\end{array}\right]+\left[\begin{array}{ll}\boldsymbol{a} & \boldsymbol{b} \\ \boldsymbol{b} & \boldsymbol{a}\end{array}\right]$
$\left\lceil a^{2}+b^{2} \quad b^{2}+c^{2}\right\rceil \quad\lceil 2 a b \quad 2 b c\rceil$
(ii) \lfloor
CUET
Academy

Class 12

$$
\begin{array}{r}
\left|a^{2}+c^{2} \quad a^{2}+b^{2}\right|+\left.\right|_{-} \\
2 a c
\end{array}
$$

$$
\left.\left.-\mathbf{2 a b} \boldsymbol{b}^{\mid}\right\rfloor \quad\right\rfloor
$$

(iii)

$$
\left\lceil\begin{array}{rrr}
-1 & 4 & -6 \\
8 & 5 & 16
\end{array}\right\rceil+\left\lceil\begin{array}{rrr}
12 & 7 & 6 \\
8 & 0 & 5
\end{array}\right\rceil
$$

$$
\left\lfloor\begin{array}{lll}
2 & 8 & 5
\end{array}\right\rfloor \quad\left[\begin{array}{lll}
3 & 2 & 4
\end{array}\right\rfloor
$$

(iv) $\begin{array}{cc}\left\lceil\cos ^{2} x\right. & \sin ^{2} x \\ 2 & 2\end{array}\left|+\begin{array}{ll}\boldsymbol{\operatorname { s i n }}^{2} x & \cos ^{2} x \\ \cos ^{2} x & \sin ^{2} x\end{array}\right|$. $\left\lfloor\begin{array}{ll}\lfloor\sin x & \cos x\end{array}\right\rfloor\rfloor$

Sol.

$$
\begin{aligned}
& \mid\lfloor a+c \quad a+b \mid\rfloor\lfloor \rfloor \\
& \left\lceil\begin{array}{lll}
a^{2}+b^{2}+2 a b & b^{2}+c^{2}+2 b c \\
& \left\lceil(a+b)^{2}\right. & \left.(b+c)^{2}\right\rceil
\end{array}\right. \\
& =\left\lfloor\begin{array}{ll}
a^{2}+c^{2}-2 a c & a^{2}+b^{2}-2 a b
\end{array}\right\rfloor=\left\lfloor\begin{array}{ll}
(a-c)^{2} & (a-b)^{2}
\end{array}\right\rfloor \\
& \text { (iii) } \left.\left|\begin{array}{rrr}
\lceil-1 & 4 & -6\rceil \\
8 & 5 & 16
\end{array}\right|+\begin{array}{rrr}
\lceil 12 & 7 & 6\rceil \\
8 & 0 & 5
\end{array} \right\rvert\, \\
& {\left[\begin{array}{lll}
2 & 8 & 5
\end{array}\right] \quad\left[\begin{array}{lll}
3 & 2 & 4
\end{array}\right]} \\
& =\left[\begin{array}{rrr}
-1+12 & 4+7 & -6+6 \\
8+8 & 5+0 & 16+5 \\
2+3 & 8+2 & 5+4
\end{array}\right]=\left\{\begin{array}{rrr}
11 & 11 & 0 \\
16 & 5 & 21 \\
5 & 10 & 9
\end{array}\right] \\
& \text { (iv) } \left.\left.\begin{array}{ll}
\left\lceil\cos ^{2} x\right. & \sin ^{2} x \\
\sin ^{2} x & \cos ^{2} x
\end{array}\right]+\begin{array}{ll}
\left\lceil\sin ^{2} x\right. & \left.\cos ^{2} x\right\rceil \\
\cos ^{2} x & \sin ^{2} x
\end{array}\right] \\
& =\begin{array}{ccc}
\cos ^{2} x+\sin ^{2} x & \sin ^{2} x+\cos ^{2} x \\
2 & 2 & 2
\end{array}\left|=\begin{array}{ll}
1 & 1 \\
2
\end{array}\right| . \\
& \mid\lfloor\sin x+\cos x \quad \cos x+\sin x\rfloor\lfloor \rfloor
\end{aligned}
$$

3. Compute the indicated products:

$$
\begin{aligned}
& \left\lceil\begin{array}{ll}
a & b \\
& \lceil a
\end{array}-b\right\rceil \\
& \text { (i) }\left\lfloor\begin{array}{ll}
-b & a
\end{array}\right\rfloor\left\lfloor\begin{array}{ll}
b & a
\end{array}\right\rfloor \\
& \text { (ii) }\left\lfloor\begin{array}{l}
2 \\
3
\end{array}\right\rfloor\left[\begin{array}{lll}
2 & 3 & 4
\end{array}\right]
\end{aligned}
$$

Class 12
$\left[\begin{array}{lll}2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]$
$\left.\begin{array}{lll}1 & - \\ 3 & 5 \\ 4 & 5 & 6\end{array}\right\rfloor$ $\begin{aligned} & 0 \\ & 2 \\ & 4\end{aligned}$
1
$\lfloor 30$
5

Sol. (i) $\left\lceil\begin{array}{ll}a & b\rceil\lceil a\end{array}-b\right\rceil$ is defined because the pre-matrix has $\left\lfloor\begin{array}{ll}-b & a \\ \hline & a \\ b & \end{array}\right.$
2 columns which is equal to the number of rows of thepostmatrix.
Performing row by column multiplication,

$$
=\begin{array}{ccc}
a(a)+b(b) & a(-b)+b(a) \\
(-b) a+a(b) & (-b)(-b)+a(a) & 0
\end{array}
$$

(ii) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]_{3 \times 1}\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]_{1 \times 3}$ is defined because the pre-matrix has
one column which is equal to the number of rows of the post-matrix.
Performing row by column multiplication,

$$
=\left[\begin{array}{lll}
1(2) & 1(3) & 1(4) \\
2(2) & 2(3) & 2(4) \\
3(2) & 3(3) & 3(4)
\end{array}\right]=\left[\begin{array}{ccc}
2 & 3 & 4 \\
4 & 6 & 8 \\
6 & 9 & 12
\end{array}\right]_{3 \times 3}
$$

(iii) $\left[\begin{array}{rr}1 & -2 \\ 2 & 3\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}1(1)+(-2) 2 & 1(2)+(-2) 3 & 1(3)+(-2) 1 \\ 2(1)+3(2) & 2(2)+3(3) & 2(3)+3(1)\end{array}\right]$
(Row by column multiplication)

$$
\begin{array}{r}
\quad=\left[\begin{array}{ccc}
2(1)+3(0)+4(3) & 2(-3)+3(2)+4(0) & 2(5)+3(4)+4(5) \\
3(1)+4(0)+5(3) & 3(-3)+4(2)+5(0) & 3(5)+4(4)+5(5) \\
4(1)+5(0)+6(3) & 4(-3)+5(2)+6(0) & 4(5)+5(4)+6(5)
\end{array}\right] \\
{\left[\begin{array} { l l l }
{ 2 + 0 + 1 2 } & { - 6 + 6 + 0 } & { 1 0 + 1 2 + 2 0 } \\
{ 3 + 0 + 1 5 } & { - 9 + 8 + 0 } & { 1 5 + 1 6 + 2 5 } \\
{ 4 + 0 + 1 8 } & { - 1 2 + 1 0 + 0 } & { 2 0 + 2 0 + 3 0 }
\end{array} \left|=\left|\begin{array}{ccc}
14 & 0 & 42 \\
18 & -1 & 56
\end{array}\right|\right.\right.} \\
\left.\left\lvert\, \begin{array}{ccc}
22 & -2 & 70
\end{array}\right.\right]
\end{array}
$$

$$
\text { (v) }\left\lceil\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array} \left\lvert\,\left\lceil\begin{array}{lll}
1 & 0 & 1 \\
\mid & & \mid \text { is defined because the pre-matrix }
\end{array}\right.\right.\right.
$$

$$
\left.\left\lfloor\begin{array}{ll}
-1 & 1
\end{array}\right\rfloor^{\lfloor-1} \quad 2 \quad 1\right\rfloor
$$

has 2 columns which is equal to the number of rows of the post-matrix.
Performing row by column multiplication,
$=\left|\begin{array}{lll}2(1)+1(-1) & 2(0)+1(2) & 2(1)+1(1) \\ 3(1)+2(-1) & 3(0) \text { UF2 }^{2} & 3(1)+2(1)\end{array}\right|$

$$
\begin{aligned}
& \lfloor(-1) \mathbf{1}+1(-1) \quad(-1) 0+1(2) \quad(-1) \mathbf{1}+1(1)\rfloor \\
& \left.=\left[\begin{array}{lll}
2-1 & 0+2 & 2+1 \\
3-2 & 0+4 & 3+2
\end{array}\right\rceil=\begin{array}{lll}
1 & 2 & 3 \\
1 & 4 & 5
\end{array}\right] . \\
& \left\lfloor\begin{array}{lll}
\\
-1-1 & 0+2 & -1+1
\end{array}\right\rfloor\left[\begin{array}{lll}
\mid & \\
-2 & 2 & 0
\end{array}\right\rfloor
\end{aligned}
$$

$$
\left.\begin{array}{r}
\left\lceil\begin{array}{ccc}
3 & -1 & 3
\end{array}\right\rceil^{\lceil 2} \\
\text { (vi) }
\end{array} \begin{array}{ccc}
\\
-1 & 0 & 2
\end{array}\right|^{\mid}\left|\begin{array}{cc}
1 & 0 \\
3 & \rfloor
\end{array}\right|=\left\lfloor\begin{array}{cc}
6-1+9 & -9-0+3\rceil \\
-2+0+6 & 3+0+2 \\
\hline
\end{array}\right.
$$

(Row by column multiplication)

$$
=\begin{array}{rr}
\lceil 14 & -6\rceil \\
{\left[\begin{array}{rr}
4 & 5 \\
\hline
\end{array}\right.}
\end{array}
$$

4. If $\mathbf{A}=\left[\left.\begin{array}{rrr}1 & 2 & -3 \\ 5 & 0 & 2 \\ \lfloor 1 & -1 & 1\end{array} \right\rvert\,\right\rfloor, B=\left[\begin{array}{rrr}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]$ and $\mathbf{C}=\left[\begin{array}{rrr}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right]$, then compute $(A+B)$ and $(B-C)$. Also, verify that $A+(B-C)=(A+B)-C$.
Sol. $A+B=\left[\begin{array}{rrr}1 & 2 & -3 \\ 5 & 0 & 2\end{array}\right\rceil+\left\lceil\begin{array}{rrr}3 & -1 & 2 \\ 4 & 2 & 5\end{array}\right\rceil=\left\lceil\begin{array}{rrr}1+3 & 2-1 & -3+2 \\ 5+4 & 0+2 & 2+5\end{array}\right\rceil$
$\left.\begin{array}{lll}1 & -1 & 1\end{array}\right\rfloor\left\lfloor\begin{array}{lll}2 & 0 & 3 \\ \hline\end{array}\left\lfloor\begin{array}{lll}1+2 & -1+0 & 1+3\end{array}\right]\right.$

Again $B-C=\left\lvert\, \begin{array}{lll}4 & 2 & 5^{\prime}-\mid 0\end{array} 3^{\mid} \begin{aligned} & \mid\end{aligned}\right.$

$$
\begin{align*}
& \left.\left\lfloor\begin{array}{lll}
2 & 0 & 3
\end{array}\right] \quad \begin{array}{lll}
1 & -2 & 3
\end{array}\right\rfloor \\
& =\left[\begin{array}{lll}
3-4 & -1-1 & 2-2 \\
4-0 & 2-3 & 5-2 \\
2-1 & 0+2 & 3-3
\end{array}\right] \\
\Rightarrow \quad B-C & =\left[\left.\begin{array}{ccc}
-1 & -2 & 0 \\
4 & -1 & 3
\end{array} \right\rvert\,\right. \tag{ii}
\end{align*}
$$

Putting the value of $(\mathrm{B}-\mathrm{C})$ from (ii) in L.H.S.

$$
\begin{aligned}
& =A+(\mathrm{B}-\mathrm{C}) \\
& =\left[\begin{array}{lll}
1 & 2 & -3 \\
5 & 0 & 2 \\
1 \\
1 & -5 & \text { CUCACT }
\end{array}+\left\lvert\, \begin{array}{ccc}
-1 & -2 & 0 \\
4 & -1 & 3 \\
1 & 2 & 0
\end{array}\right.\right]
\end{aligned}
$$

$$
=\left\{\begin{array}{rrr}
1-1 & 2-2 & -3+0 \\
\left|\begin{array}{ccc}
1-4 & 0-1 & 2+3 \\
1+1 & -1+2 & 1+0
\end{array}\right|
\end{array}=\begin{array}{rrr}
{\left[\begin{array}{rrr}
0 & 0 & -3 \\
5+1 & 5 \\
9 & -1 & 5 \\
2 & 1 & 1
\end{array}\right] \ldots(i i i) .}
\end{array}\right.
$$

Putting the value of $(\mathrm{A}+\mathrm{B})$ from (i) in R.H.S. $=(\mathrm{A}+\mathrm{B})-\mathrm{C}$

$$
\left\lceil 4 \begin{array}{lll}
\lceil 4 & 1 & -1\rceil
\end{array}\lceil 4 \quad 1 \quad 2\rceil\right.
$$

$$
=\left|\begin{array}{lll}
9 & 2 & 7
\end{array}\right|-\left|\begin{array}{lll}
0 & 3 & 2
\end{array}\right|
$$

$$
\left\lfloor\begin{array}{lll}
3 & -1 & 4 \\
\hline
\end{array} \quad \begin{array}{lll}
1 & -2 & 3
\end{array}\right\rfloor
$$

$$
=\begin{array}{ccc}
\lceil 4-4 & 1-1 & -1-2 \tag{iv}\\
\left|\begin{array}{ccc}
4-0 & 2-3 & 7-2 \\
9-1 \\
3-1 & -1+2 & 4-3
\end{array}\right|
\end{array}=\begin{array}{lll}
{\left[\left.\begin{array}{rrr}
0 & 0 & -3 \\
\mid & -1 & 5
\end{array} \right\rvert\,\right.} \\
\left.\left\lvert\, \begin{array}{lll}
9 & 1 & 1
\end{array}\right.\right\rfloor
\end{array}
$$

From (iii) and (iv), we have L.H.S. $=$ R.H.S.

| $\lceil\underline{2}$ | 1 | $\underline{5}\rceil$ |
| :--- | :--- | :--- |\(\left|\begin{array}{lll}2 \& 3 \& 1

3 \& \& 3\end{array}\right|\)
5. If $A=\left|\begin{array}{lll}\underline{1} & \underline{2} & \underline{4} \\ 3 & 3 & 3 \\ \underline{7} & & \underline{2}\end{array}\right|$ and $B=\left|\begin{array}{lll}\underline{1} & \underline{2} & \underline{4} \\ 5 & 5 & \underline{5} \\ \underline{7} & \underline{6} & \underline{2}\end{array}\right|$, then compute 3A-5B.

$$
\left\lceil\begin{array}{lll}
\underline{2} & 1 & 5
\end{array}\right\rceil \quad\left\lceil\begin{array}{lll}
\underline{2} & 3 & 1
\end{array}\right\rceil
$$

Multiplying each entry of first matrix by 3 and each entry of second matrix by 5

$$
\left\lfloor\begin{array}{lll}
\lfloor 7 & 6 & 2\rfloor
\end{array} \left\lvert\, \begin{array}{lll}
\lfloor 7 & 6 & 2\rfloor \\
\lfloor & \left\lfloor\begin{array}{lll}
7-7 & 6-6 & 2-2
\end{array}|\quad| \begin{array}{lll}
0 & 0 & 0
\end{array}\right\rfloor
\end{array}\right.\right.
$$

Remark. Here answer is a zero matrix.
6. Simplify $\boldsymbol{\operatorname { c o s }} \theta$

Sol. $\cos \theta \begin{array}{cc}\lceil-\cos \theta & \sin \theta\rceil \\ -\sin \theta & \cos \theta\end{array}+\sin \theta\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right.$

Class 12

Chapter 3 - Matrices

Remark. The answer matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & \mathbf{1}\end{array}\right]$ of this question is identity (unit) matrix I_{2}.
7. Find X and Y if

$$
\begin{aligned}
& \text { (i) } \mathbf{X}+\mathbf{Y}=\left[\begin{array}{ll}
7 & 0\rceil \\
2 & \rfloor
\end{array} \text { and } \mathbf{X}-\mathbf{Y}=\left\lceil\begin{array}{cc}
3 & 0\rceil \\
0 & \rfloor
\end{array}\right.\right. \\
& \text { (ii) } \left.\mathbf{2 X}+\mathbf{3 Y}=\begin{array}{ll}
2 & 3 \\
4 & \rfloor
\end{array}\right\rfloor \text { and } \mathbf{3 X}+\mathbf{2 Y}=\begin{array}{|cc|}
\mid \mathbf{2} & -\mathbf{2} \\
-\mathbf{1} & 5
\end{array}
\end{aligned}
$$

Sol. (i) Given: $X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$
and $\quad X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$
Adding eqns. (i) and (ii), we have

$$
\begin{array}{r}
2 X= \\
\left.\left.\left\lfloor\begin{array}{ll}
7 & 0 \\
\hline & 5
\end{array}\right]+\begin{array}{ll}
\lceil 3 & 0 \\
\hline
\end{array}\right)=\begin{array}{ll}
7+3 & 0+0 \\
0 & 3
\end{array}\right\rfloor\left\lfloor\begin{array}{ll}
10 & 0\rceil \\
2+0 & 5+3 \\
\hline
\end{array}\right. \\
\left\lfloor\begin{array}{ll}
2 & 8 \\
\hline
\end{array}\right.
\end{array}
$$

$$
X=\frac{1}{2}\left[\begin{array}{cc}
10 & 0 \\
2 &]
\end{array}\right]=\left[\left.\begin{array}{cc}
\frac{10}{2} & \frac{0}{2} \\
\frac{2}{2} & \frac{8}{2}
\end{array} \right\rvert\,=\left[\begin{array}{ll}
5 & 0 \\
1 & 4
\end{array}\right] .\right.
$$

Eqn. (i) - eqn. (ii) gives
(ii) Given: $2 X+3 Y=\left[\begin{array}{ll}2 & 3 \\ 4 & 0\end{array}\right]$
and $\quad 3 X+2 Y=\left[\left.\begin{array}{cc}\lceil-2 & -2\rceil \\ -1 & 5 \\ \mid\end{array} \right\rvert\,\right.$
Multiplying equation (i) by 2 , we have

$$
4 X + 6 \longdiv { \square } [\begin{array} { l }
{ 2 } \tag{iii}\\
{ \text { ACUETE } }
\end{array} \sqrt { 4 } \begin{array} { l }
{ 6 } \\
{ \text { ACadem } } \\
{ 0 }
\end{array}]
$$

$$
\begin{aligned}
& 2 \mathrm{Y}=\left\lceil\begin{array}{ll}
7 & 0
\end{array}\right\rceil,\left\lceil 307=\lceil 7-3 \quad 0-0\rceil=\left\lceil\begin{array}{ll}
4 & 0 \\
\hline
\end{array}\right.\right. \\
& \left\lfloor\begin{array}{ll}
2 & 5 \\
\rfloor & 3
\end{array}\right\rfloor\left\lfloor\begin{array}{ll}
0 & 2-0 \\
5-3
\end{array}\right\rfloor\left\lfloor\begin{array}{ll}
2 & 2
\end{array}\right\rfloor \\
& \therefore \quad \mathrm{Y}=\frac{1}{2}\left[\begin{array}{ll}
4 & 0 \\
2 & 2
\end{array}\right]=\left[\begin{array}{ll}
\frac{4}{2} & \underline{2} \\
2 & 2 \\
\frac{2}{2} & \frac{2}{2}
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right] .
\end{aligned}
$$

Multiplying equation (ii) by 3 , we have
$9 X+6 Y=3\left|\begin{array}{rr}2 & -2 \\ \mid-1 & 5\end{array}\right|=\left|\begin{array}{cc}6 & -6\rceil \\ -3 & 15\end{array}\right|$
Equation (iy) - equation (iii) gives
$5 X=$
$\left|\begin{array}{cc}6 & -67 \\ -3 & 15\end{array}\right| \begin{array}{cc}\lceil 4 & 6 \\ \mid 8 & 0\end{array}\left|=\begin{array}{cc}6-4 & -6-6\rceil \\ -3-8 & 15-0\end{array}\right|$

$\mid\lfloor\mid\rfloor\lfloor\mid\rfloor$
$=\left\lceil\begin{array}{rr}2 & -12 \\ -11 & 15\end{array}\right\rceil$
U |
$\therefore \mathrm{X}=\begin{array}{r}\underline{\mathbf{1}}\left\lceil\left.\begin{array}{rr}2 & -12\rceil \\ \mid & \left.\left\lvert\, \begin{array}{rr}-\mathbf{1 1} & 15\end{array}\right.\right]\end{array}=\begin{array}{rrr}\underline{2} & \underline{-12} \mid \\ 5 & 5 \\ \left\lvert\, \frac{\mathbf{1 1}}{5}\right. & 3\end{array} \right\rvert\,\right.\end{array}$.
Now from equation (i),

$$
3 \mathrm{Y}=\left[\begin{array}{ll}
2 & 3 \\
4 & 0
\end{array}\right]-2 \mathrm{X}
$$

$$
=\left\lceil\begin{array}{lll}
2- & 4 & 3+\frac{24}{5}
\end{array}\right\rceil=\left[\begin{array}{cc}
\frac{6}{5} & \frac{39}{5}
\end{array}\right\rceil
$$

$$
\left|4+\frac{22}{5} \quad 0 \quad-6\right|\left|\frac{42}{5}-6\right|
$$

$$
\Rightarrow \mathrm{Y}=\frac{1}{3} \left\lvert\,\left[\begin{array}{cc}
\frac{6}{5} & 39 \\
5
\end{array} \left\lvert\,=\left[\begin{array}{cc}
\frac{2}{5} & \frac{13}{5} \\
\frac{42}{5} & -6
\end{array}\right]\left[\begin{array}{ll}
\frac{14}{5} & -2
\end{array}\right]\right.\right.\right.
$$

8. Find X if $Y=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$ and $2 X+Y=\left[\begin{array}{ll}1 & 0 \\ 3 & 2\end{array}\right]$.

Sol. $\left.\quad 2 \mathrm{X}+\mathrm{Y}=\begin{array}{ll} & 1 \\ & 0\end{array}\right\rceil \Rightarrow 2 \mathrm{X}=\left\lceil\begin{array}{ll}1 & 0\end{array}\right\rceil$

9. Find x and y, if \quad\begin{tabular}{cc}
$\lceil 1$ \& 3

\hline

$+$

$\lceil y$ \& 0

\hline
\end{tabular}\(=\left\lceil\begin{array}{ll}5 \& 6

\hline \& 2\end{array}\right]\).

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{X}=\frac{1}{2}\left[\begin{array}{ll}
-2 & -2 \\
-4 & -2
\end{array}\right] \quad=\left[\begin{array}{ll}
-1 & -1 \\
-2 & -1
\end{array}\right] .
\end{aligned}
$$

Class 12

Equating corresponding entries, we have

$$
\begin{aligned}
& & 2+y & =5 \quad \text { and } \quad 2 x+2=8 \\
\Rightarrow & & y & =5-2=3 \text { and } 2 x=8-2=6 \Rightarrow x=3 \\
\therefore & & x & =3, y=3 .
\end{aligned}
$$

10. Solve the equation for x, y, z and t if

$$
2\left[\begin{array}{ll}
x & z \\
y & t
\end{array}\right]+3\left[\begin{array}{rr}
1 & -1\rceil \\
0 & \rfloor
\end{array}\right]\left[\begin{array}{ll}
3 & 5 \\
4 & 6
\end{array}\right]
$$

Sol. Given: $\quad 2\left[\begin{array}{ll}x & z \\ y & t\end{array}\right]+3\left[\begin{array}{rr}1 & -1 \\ 0 & \rfloor\end{array}\right]=3\left[\begin{array}{ll}3 & 5 \\ 4 & 6\end{array}\right]$
$\Rightarrow \quad \begin{array}{ll}2 x & 2 z \\ 2 y & 2 t\end{array}\left|+\begin{array}{ll}\lceil 3 & -3\rceil \\ 0 & 6\end{array}\right|=\left[\left.\begin{array}{rr}9 & 15 \\ 12 & 18\end{array} \right\rvert\,\right.$
$\Rightarrow \quad\left[\begin{array}{ll}2 x+3 & 2 z-3 \\ 2 y+0 & 2 t+6\end{array}\right]=\left[\begin{array}{rr}9 & 15 \\ 12 & 18\end{array}\right]$
Since the two matrices are equal, so the corresponding elements are equal.
Thus,

$$
2 x+3=9
$$

$\Rightarrow \quad 2 x=9-3=6 \quad \Rightarrow \quad x=3$
Also $\quad 2 Z-3=15 \quad \Rightarrow \quad 2 Z=18 \quad \Rightarrow \quad z=9$
Also and
$2 t+6=18$ and
$=6, z=9$ and $t=6$.
$\lceil-\mathbf{1}\rceil=\lceil\mathbf{1 0}\rceil$, find

Sol. Given: x

Equating corresponding entries, we have

$$
\begin{equation*}
2 x-y=10 \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
3 x+y=5 \tag{ii}
\end{equation*}
$$

Adding eqns. (i) and (ii) we have $5 x=15$
or

$$
x=\underline{15}=3
$$

Putting $x=3$ in (ii),,$\stackrel{5}{9}+y=5 \Rightarrow y=5-9=-4$

Class 12
Chapter 3 - Matrices
Sol. Given: $3 \begin{array}{ll}\lceil x & y\rceil\end{array}=\begin{array}{cc}x & 6 \\ \left.\left|\begin{array}{ll}x & \\ \mid & 2 w\end{array}\right|+\begin{array}{cc}4 & x+y\rceil \\ z+w & 3\end{array} \right\rvert\,\end{array}$ $\left.\Rightarrow \quad \begin{array}{cc}\lfloor & \rfloor \\ 3 x & 3 y\rceil \\ 3 z & 3 w\end{array}\right\rfloor=\left[\begin{array}{cc}\lfloor x+4 & 6+x+y \\ -1+z+w & 2 w+3\end{array}\right\rfloor$
Equating corresponding entries, we have

$$
\begin{array}{llll}
& 3 x=x+4 & \Rightarrow & 2 x=4 \Rightarrow x=2 \\
\text { and } & 3 y=6+x+y & \Rightarrow & 2 y=6+x=6+2 \\
\Rightarrow & 2 y=8 & \Rightarrow & y=4 \tag{ii}
\end{array}
$$

and $\quad 3 z=-1+z+w \Rightarrow 2 z-w=-1$
and $\quad 3 w=2 w+3 \quad \Rightarrow \quad w=3$.
Putting $w=3$ in eqn. (iii),

$$
\begin{array}{rlrl}
2 z-3 & =-1 \\
& x & =2, \quad y=4, \quad z=1, \quad w=3 .
\end{array}
$$

13. If $F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0\end{array}\right]$, show that $F(x) F(y)$

Sol. Given: $\mathrm{F}(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0\end{array}\right]$

Performing row by column multiplication,

$$
=\left[\left.\begin{array}{l}
\cos x \cos y-\sin x \sin y+0-\cos x \sin y-\sin x \cos y+00-0+0 \\
\sin x \cos y+\cos x \sin y+0-\sin x \sin y+\cos x \cos y+00+0+0
\end{array} \right\rvert\,\right.
$$

$$
\left\lfloor\begin{array}{lll}
0+0+0 & 0+0+0 & 0+0+1
\end{array}\right.
$$

$$
=\left[\begin{array}{ccc}
\cos (x+y) & -\sin (x+y) & 0 \\
\sin (x+y) & \cos (x+y) & 0 \\
0 & 0 & 1
\end{array}\right] \quad[\because-\cos x \sin y-\sin x \cos y
$$

Now, changing x to $x+y$ in (i), we get

$$
\mathrm{F}(x+y)=\left[\begin{array}{ccc}
\cos (x+y) & -\sin (x+y) & 0 \\
\sin (x+y) & \cos (x+y) & 0
\end{array}\right\rceil \quad \text { Thus, L.H.S. }=\text { R.H.S. }
$$

14. Show that:

Class 12
$\stackrel{\lceil 2}{\neq} \begin{array}{ll}17 \\ & \\ & \\ & \begin{array}{c}\lceil 5 \\ 1\rceil\end{array}\end{array}$
L
(ii) $\left\lceil\begin{array}{lll}\mathbf{1} & \mathbf{2} & \mathbf{3} \\ \mathbf{0} & \mathbf{1} & \mathbf{0}\end{array}\right\rceil\left\lceil\begin{array}{rrr}-\mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{- 1} & \mathbf{1}\end{array}\right\rceil_{\neq}\left[\left.\begin{array}{rrr}-\mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{- 1} & \mathbf{1}\end{array} \right\rvert\,\left[\begin{array}{lll}\mathbf{1} & \mathbf{2} & \mathbf{3} \\ \mathbf{0} & \mathbf{1} & \mathbf{0}\end{array}\right]\right.$

Sol.

$$
\begin{align*}
= & \left\lceil\begin{array}{ll}
10-3 & 5-4 \\
\hline
\end{array}=\begin{array}{ll}
7 & 1\rceil
\end{array}\right. \tag{i}\\
\text { R.H.S. } & =\left[\begin{array}{ll}
12+21 & 1 \\
3 & 4+28
\end{array}\right]\left[\begin{array}{lr}
5 & -1 \\
6 & 7
\end{array}\right]=\left[\begin{array}{ll}
2(5)+1(6) & 2(-1)+1(7) \\
3(5)+4(6) & 3(-1)+4(7)
\end{array}\right] \\
= & \left\lceil\begin{array}{ll}
10+6 & -2+7 \\
15+24 & -3+28
\end{array}\right\rceil=\left[\begin{array}{ll}
16 & 5 \\
\hline
\end{array}\right]
\end{align*}
$$

$\lfloor\quad\rfloor \quad\lfloor 39 \quad 25\rfloor$
From (i) and (ii), we can say that L.H.S. \neq R.H.S.
(Because corresponding entries of matrices $\left[\begin{array}{cc}7 & 1 \\ 33 & 34\end{array}\right]$ and $\left[\begin{array}{rr}16 & 5 \\ 39 & 25\end{array}\right]$ are not same).
(ii) Let $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0\end{array}\right]$ and $\mathrm{B}=\left[\left.\begin{array}{rrr}-1 & 1 & 0 \\ 0 & -1 & 1\end{array} \right\rvert\,\right.$

$$
\left\lfloor\begin{array}{lll}
1 & 1 & 0
\end{array}\right\rfloor \quad\left\lfloor\begin{array}{lll}
2 & 3 & 4
\end{array}\right\rfloor
$$

Here, matrices A and B are both of order 3×3 respectively, therefore $A B$ and $B A$ are both of same order 3×3.
Now, $\mathrm{AB}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0\end{array} \|\left[\left.\begin{array}{rrr}-1 & 1 & 0 \\ 0 & -1 & 1\end{array} \right\rvert\,\right.\right.$
$\left.\begin{array}{lll}1 & 1 & 0\end{array}\right]\left\lfloor\begin{array}{lll}2 & 3 & 4\end{array}\right]$
Performing row by column multiplication,

$$
\begin{aligned}
& =\left[\begin{array}{lll}
1(-1)+2(0)+3(2) & 1(1)+2(-1)+3(3) & 1(0)+2(1)+3(4) \\
0(-1)+1(0)+0(2) & 0(1)+1(-1)+0(3) & 0(0)+1(1)+0(4) \\
1(-1)+1(0)+0(2) & 1(1)+1(-1)+0(3) & 1(0)+1(1)+0(4)
\end{array}\right] \\
& \text { or } \mathrm{AB}=\begin{array}{ccc}
\lceil-1+6 & 1-2+9 & 2+12 \\
0 & -1 & 1
\end{array}\left|=\left|\begin{array}{ccc}
5 & 8 & 14 \\
0 & -1 & 1
\end{array}\right| \ldots(i)\right. \\
& {\left[\begin{array}{lll}
1 & \\
-\mathbf{1} & \mathbf{1 - 1} & \mathbf{1}
\end{array}\right]\left[\begin{array}{lll}
\mid & \\
-\mathbf{1} & \mathbf{0} & \mathbf{1}
\end{array}\right\rfloor}
\end{aligned}
$$

Again, $\left.\left.\mathrm{BA}=\left[\begin{array}{rrr}{[-1} & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{array}\right] \right\rvert\, \begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]$
Performing row by column multiplication,

$$
\left\lceil(-1) 1+1(0)+0\left(15 \text { KCtider }{ }^{2} 1\right) y^{+}(1) \quad(-1) 3+1(0)+o(0)\right\rceil
$$

$$
\left.\begin{array}{l}
=\left|\begin{array}{lll}
0(1)+(-1) \mathrm{o}+1(1) & \mathrm{o}(2)+(-1) 1+1(1) & \mathrm{o}(3)+(-1) \mathrm{o}+1(0) \\
\lfloor 2(1)+3(0)+4(1) & 2(2)+3(1)+4(1) & 2(3)+3(0)+4(0)
\end{array}\right|
\end{array}\right]
$$

From (i) and (ii), $\mathrm{AB} \neq \mathrm{BA}$ because corresponding entries of matrices $A B$ and $B A$ are not same.
Remark. From both questions (i), (ii) we can learn that matrix multiplication is not commutative.
15. Find $A^{2}-5 A+6 I$ if $A=\left[\begin{array}{rrr}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$.

Sol. A^{2} = A . A $=\left[\begin{array}{rrr}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]\left[\begin{array}{rrr}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$
Performing row by column multiplication,
$\therefore A^{2}-5 A+6 I=A^{2}-5 A+6 I_{3}$ (Here I is I_{3} because matrices A and A^{2} are of order 3×3)
$\left.\left.=\left\lvert\, \begin{array}{ccc}5 & -1 & 2 \\ 9 & -2 & 5\end{array}\right.\right\rceil-5 \begin{array}{lll}{\left[\begin{array}{ll}2 & 0 \\ 2 & 1\end{array}\right.} & 1\end{array}\right\rceil+6\left\lceil\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right\rceil$
$\left\lfloor\begin{array}{lll}0 & -1 & -2\end{array}\right] \quad\left[\begin{array}{lll}1 & -1 & 0\end{array}\right] \quad\left[\begin{array}{lll}0 & 0 & 1\end{array}\right\rfloor$
$\left.=\begin{array}{rrr}\lceil 5 & -1 & 2 \\ 9 & -2 & 5\end{array}\right\rceil-\left[\begin{array}{rrr}10 & 0 & 5 \\ 10 & 5 & 15\end{array} \left\lvert\,+\left[\begin{array}{lll}6 & 0 & 0 \\ 0 & 6 & 0\end{array}\right\rceil\right.\right.$
$\left\lfloor\begin{array}{lll}1 & -1 & -2\end{array}\right\rfloor\left[\begin{array}{lll}5 & -5 & 0\end{array}\right\rfloor\left[\begin{array}{lll}0 & 0 & 6\end{array}\right\rfloor$

$$
=\left[\left.\begin{array}{lll}
{[5-10+6} & -1-0+0 & 2-5+0 \\
9-10+0 & -2-5+6 & 5-15+0 \\
\mid \\
0-5+0 & -1+5+0 & -2-0+6
\end{array} \right\rvert\,=\left[\begin{array}{ccc}
1 & -1 & -3 \\
\left|\begin{array}{rrr}
1 & -1 & -10
\end{array}\right| \\
-5 & 4 & 4
\end{array}\right\rfloor\right.
$$

Remark. The above question can also be stated as:
If $f(x)=x^{2}-5 x+6$ and $\mathrm{A}=\left[\begin{array}{rrr}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$; then find $f(\mathrm{~A})$.

$$
\left\lceil\begin{array}{lll}
1 & 0 & 2
\end{array}\right\rceil
$$

16. If $A=\left|\begin{array}{lll}0 & 2 & 1\end{array}\right|$, proserquedilerni $y^{2}+7 A+2 I=0$.

Sol. Given: $\left.\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right] \quad \therefore \mathrm{A}^{2}=\mathrm{A} . \mathrm{A}=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right] \right\rvert\,\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$

$$
\text { L.H.S. }=\mathrm{A}^{3}-6 \mathrm{~A}^{2}+7 \mathrm{~A}+2 \mathrm{I}
$$

$$
=\mathrm{A}^{3}-6 \mathrm{~A}^{2}+7 \mathrm{~A}+2 \mathrm{I}_{3}
$$

[Here I is I_{3} because A, A^{2}, A^{3} are matrices of order 3×3]

$$
=\left[\begin{array}{rrr}
-9 & 0 & -14 \\
0 & -16 & -7 \\
-14 & 0 & -23
\end{array}\right]+\left[\begin{array}{rrr}
9 & 0 & 14 \\
0 & 16 & 7 \\
14 & 0 & 23
\end{array}\right]
$$

$$
=\left[\left.\begin{array}{rrr}
-9+9 & 0+0 & -14+14 \\
0+0 & -16+16 & -7+7 \\
-14+14 & 0+0 & -23+23
\end{array} \right\rvert\,=\left[\left.\begin{array}{lll}
0 & 0 & 0 \\
\mid & 0 & 0
\end{array} \right\rvert\,\right.\right.
$$

$$
=(\text { zero matrix }) \mathrm{O}=\text { R.H.S. }
$$

17. If $A=\lceil 3-2\rceil$ and $I=$| 1 | 0 |
| :---: | :---: | , find k so that $A^{2}=k A-2 I$. $\begin{array}{ll}4 & -2\end{array} \varliminf^{\text {and }}\left\lfloor\begin{array}{ll}0 & 1\end{array}\right\rfloor^{\prime 2}$, ACUET

$$
\begin{aligned}
& \lceil 21 \quad 0 \quad 34\rceil\lceil 30 \quad 0 \quad 48\rceil\left\lceil\begin{array}{llll}
7 & 0 & 14 \\
\hline & \lceil 2 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
1+0+4 & 0+0+0 & 2+0+6 \\
0+0+2 & 0+4+0 & 0+2+3 \\
2+0+6 & 0+0+0 & 4+0+9
\end{array}\right]=\left[\left.\begin{array}{ccc}
5 & 0 & 8 \\
2 & 4 & 5 \\
8 & 0 & 13
\end{array} \right\rvert\,\right\rfloor \\
& \left\lceil\begin{array}{lll}
5 & 0 & 8 \\
2 & 4 & 5
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1
\end{array}\right\rceil \\
& \therefore \quad \mathrm{A}^{3}=\mathrm{A}^{2} \cdot \mathrm{~A}=\left|\begin{array}{lll}
2 & 4 & 5
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \left\lceil\begin{array}{rrr}
5+0+16 & 0+0+0 & 10+0+24 \\
2+0+10 & 0+8+0 & 4+4+15
\end{array}\right\rceil \quad\left[\begin{array}{lll}
21 & 0 & 34 \\
12 & 8 & 23
\end{array}\right\rceil \\
& \left.=\left|\begin{array}{lll}
\mid \text { or } \mathrm{A} & =\left|\begin{array}{lll}
34 & 0 & 55
\end{array}\right| \\
\mid 8+0+26 & 0+0+0 & 16+0+39
\end{array}\right|\right\rfloor
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad \mathrm{A}^{2}=\mathrm{A} . \mathrm{A}=\left\lceil\begin{array} { l l }
{ 3 } & { - 2 } \\
{ 4 } & { - 2 } \\
{ \hline }
\end{array} \left\lceil\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right.\right. \\
& \begin{array}{cc}
\lfloor & \rfloor\lfloor \\
= & \left.\begin{array}{cc}
9-8 & -6+4 \\
12-8 & -8+4
\end{array}\right\rceil=\left\lceil\begin{array}{ll}
1 & -2 \\
4 & -4
\end{array}\right\rceil
\end{array} \\
& \text { L }
\end{aligned}
$$

Putting values of $\mathrm{A}^{2}, \mathrm{~A}$ and I in the given equation $\mathrm{A}^{2}=k \mathrm{~A}-2 \mathrm{I}$, we have

$$
\begin{aligned}
&\left.\begin{array}{ll}
1 & -2 \\
4 & -4
\end{array}\right\rceil=k\left\lceil\begin{array}{cc}
3 & -2\rceil \\
4 & -2
\end{array}-2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} \left\lvert\,=\left\lceil\begin{array}{cc}
3 k & -2 k \\
4 k & -2 k
\end{array}\right]-\left[\left.\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array} \right\rvert\,\right.\right.\right.\right. \\
&\lfloor \\
&\rfloor \\
&\left\lfloor\left.\begin{array}{ll}
1 & -2 \\
4 & -4
\end{array} \right\rvert\,=\right. \\
&\left\lfloor\begin{array}{cc}
3 k-2 & -2 k \\
4 k & -2 k-2 \\
4
\end{array}\right\rfloor
\end{aligned}
$$

Equating corresponding entries, we have
$3 k-2=1 \Rightarrow 3 k=3 \Rightarrow k=1$ and $-2=-2 k \Rightarrow k=1$
and $4 k=4 \Rightarrow k=1$ and $-4=-2 k-2 \Rightarrow 2 k=-2+4=2$
$\Rightarrow \quad k=1$
Therefore, value of $k=1$ and is same from all the four equations.
Therefore, k exists and $=1$.

order 2 , show that $I+A=(I-A)\left\lceil\begin{array}{ll}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$.

Sol. $A=\left|\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \underline{\alpha} & \end{array}\right|$ and I is the identity matrix of order 2

$$
\begin{array}{rcc}
L_{2}^{\tan } & 0 & \mid\rfloor \\
& I=I_{2} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{array}
$$

i.e.,

$$
\left\lceil\begin{array} { l l }
{ 1 } & { 0 }
\end{array} \left\lceil\left\lceil\begin{array}{ll}
0 & \left.-\tan \frac{\alpha}{2}\right\rceil
\end{array}\right.\right.\right.
$$

$$
\left\lceil\begin{array}{ll}
1 & -\tan \frac{\alpha}{2}
\end{array}\right\rceil
$$

$$
\begin{equation*}
=\mid \quad \underline{\alpha} \tag{i}
\end{equation*}
$$

Again, $\quad I-A=I_{2}-A=\left|\begin{array}{ll}0 & 1\end{array}\right|-\left|\begin{array}{ll}0 & -\tan \frac{\underline{\alpha}}{2}\end{array}\right|$

$$
\left.=\left[\left.\begin{array}{cc}
1 & \tan \frac{\alpha}{2} \\
\left\lfloor-\tan \frac{\alpha}{2}\right. & 1
\end{array} \right\rvert\,\right\rfloor\left|\begin{array}{cc}
\mid \tan 2 & 0
\end{array}\right|\right\rfloor
$$

$$
\text { Performing row by column multiplication, } \left.\begin{aligned}
\cos \alpha+\sin \alpha \tan \frac{\alpha}{2} & -\sin \alpha+\cos \alpha \tan \frac{\alpha}{2}
\end{aligned} \right\rvert\,
$$

$[\because \cos A \cos B+\sin A \sin B=\cos (A-B)$ and $\sin A \cos B-\cos A \sin B=\sin (A-B)]$

$$
\left.\left.\begin{array}{rl}
& =\left\lvert\, \begin{array}{cc}
1 & \left.-\tan \frac{\alpha}{2}\right\rceil
\end{array}\right. \tag{ii}\\
& \mid \\
& \tan \frac{\alpha}{2} \\
1
\end{array} \right\rvert\,\right\rfloor
$$

From equations (i) and (ii), we have L.H.S. = R.H.S.
i.e., $\mathrm{I}+\mathrm{A}=(\mathrm{I}-\mathrm{A})\left[\left.\begin{array}{cc}\cos \alpha & -\sin \alpha\rceil \\ \sin \alpha & \cos \alpha\end{array} \right\rvert\,\right.$.
19. A trust fund has - 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year and the second bond pays 7\% interest per year. Using matrix multiplication, determine how to divide

- 30,000 in two types of bonds, if the trust fund must obtain an annual interest of
(a) `1800 (b)` 2000.

Sol. Let the investment in first bond be ` x, then the investment in second bond $={ }^{\prime}(30,000-x)$ Interest paid by first bond $=5 \%=\frac{5}{100}$ per rupee

Interest paid by second bond $=7 \%=\frac{7}{100}$ per rupee
Matrix of investment is $\mathrm{A}=\left[\begin{array}{ll}x & 30000-x\end{array}\right]_{1 \times 2}$
Matrix of annual interest per rupee is $B=\left[\begin{array}{c}\frac{5}{100} \\ \frac{7}{100}\end{array}\right]_{2 \times 1}$
Matrix of total annual interest is

\therefore Total annual interest $=\frac{2,10,000-2 X}{100}$
(a) total annual interest is given to be ${ }^{`} 1,800$

$$
\therefore \quad \frac{2,10,000-2 x}{100}=1,800
$$

$\Rightarrow \quad 2,10,000-2 x=1,80,000 \therefore x=15,000$
Hence, investment in first bond $={ }^{`} 15,000$
and investment in second bond $\left.\overline{\overline{\mathbf{E}}} \mathbf{T}^{(30,000-x}\right)$
Acàdemy $(30,00-15,000)={ }^{\text { }} 15,000$.
(b) Total annual interest is given to be ` 2,000

$$
\therefore \quad \frac{2,10,000-2 x}{100}=2,000
$$

$$
\Rightarrow 2,10,000-2 x=2,00,000 \quad \therefore \quad x=5,000
$$

Hence, investment in first bond $={ }^{`} 5,000$ and investment in second bond $=`(30,000-x)=`(30,000-5,000)={ }^{`} \mathbf{2 5 , 0 0 0}$.
20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are ` 80 ,` 60 and ` 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.
Sol. Let us represent the number of books as a 1×3 row matrix

$$
\mathrm{B}=\lceil\underset{\times}{10 \text { dozen }} \quad 8 \text { dozen } \quad 10 \text { dozen }\rceil
$$

$$
\lfloor 10 \quad 12 \quad 120 \quad 8 \times 12=96 \quad 10 \times 12=120\rfloor
$$

Let us represent the selling prices of each book as a 3×1 column matrix $S=\left[\begin{array}{l}80 \\ 60 \\ 40\end{array}\right]$
\therefore [Total amount received by selling all books $]_{1 \times 1}$

$$
\begin{aligned}
& =\mathrm{BS}=\left[\begin{array}{lll}
120 & 96 & 120
\end{array}\right]_{1 \times 3}\left[\begin{array}{c}
80 \\
60 \\
40
\end{array}\right]_{3 \times \mathrm{l}} \\
& =[120(80)+96(60)+120(40)]_{1 \times 1} \\
& =[9600+5760+4800]=[20160]
\end{aligned}
$$

Equating corresponding entries,
Total amount received by selling all the books $=$ ` 20160.
Assume X, Y, Z, W and P are matrices of order $2 \times n, 3 \times k$, $2 \times p, n \times 3$ and $p \times k$ respectively. Choose the correct answer in Exercises 21 and 22.
21. The restriction on n, k and p so that $P Y+W Y$ will be defined are:
(A) $k=3, p=n$
(B) k is arbitrary, $p=2$
(C) p is arbitrary, $k=3$
(D) $k=2, p=3$.

Sol. Given: Matrix PY + WY is defined (\Rightarrow possible).
Matrix P is of order $p \times k$ and matrix Y is of order $3 \times k$ and matrix W is of order $n \times 3$.
Now PY + WY = $(\mathrm{P}+\mathrm{W}) \mathrm{Y}$
We know that sum $\mathrm{P}+\mathrm{W}$ is defined if two matrices

$$
\mathrm{p} \times \mathrm{k} \quad n \times 3
$$

P and W are of same order. Therefore $p=n$ and $k=3$ and order of $\mathrm{P}+\mathrm{W}$ is $n \times 3$ (or $p \times k$)
Therefore from (1), $\mathrm{PY}+\mathrm{WY}=(\mathrm{P}+\mathrm{W}) \mathrm{Y}$ is defined as

Number of columns in $\mathrm{P}+\mathrm{W}$ is same as number of rows in Y .
$\therefore p=n$ and $k=3$
\therefore Option (A) is the correct answer i.e., $k=3$ and $p=n$.
22. If $n=p$, then order of the matrix $7 \mathrm{X}-5 \mathrm{Z}$ is
(A) $p \times 2$
(B) $2 \times n$
(C) $n \times 3$
(D) $p \times n$.

Sol. Since $n=p$ (given), the order of matrices X and Z are equal.
$\therefore 7 \mathrm{X}-5 \mathrm{Z}$ is well defined and the order of $7 \mathrm{X}-5 \mathrm{Z}$ is same as the order of X and Z .
\therefore The order of $7 \mathrm{X}-5 \mathrm{Z}$ is either equal to $2 \times n$ or $2 \times p$
$(\because n=p)$
$\therefore \quad$ The correct option is (B), i.e., the order of $7 \mathrm{X}-5 \mathrm{Z}$ is $2 \times n$.

Exercise 3.3

1. Find the transpose of each of the following matrices:

$\left[\begin{array}{l}5 \\ 1\end{array}\right]$
$\lceil\mathbf{1}-\mathbf{1}\rceil\rceil$
$\left\lceil\begin{array}{ccc}-1 & 5 & 6\end{array}\right\rceil$
(i)
$\begin{array}{rr}\mid r \\ \mid & 2 \\ -1 \\ \lfloor & 1\end{array}$
(ii)

2	3

(iii) $\left|\begin{array}{rrr}\sqrt{3} & 5 & 6 \\ 2 & 3 & -1\end{array}\right|$.
(i) Let $\mathrm{A}=$ $\left[\begin{array}{r}5 \\ \mathbf{1} \\ 2 \\ -1\end{array}\right]$ (is a column matrix 3×1)
Changing column of A into a row, (row will automatically become column)
Transpose of A (i.e., A^{\prime} or A^{T}) $=\left[\begin{array}{lll}5^{1} & & -1 \\ & 2 & \end{array}\right]$
(which is a row matrix 1×3)
(ii) Let $A=\left[\begin{array}{rr}1 & -1 \\ \hline & 3\end{array}\right\rfloor$

Changing rows of A to columns of A ,
(columns will automatically beocme rows),
A^{\prime} or $A^{T}=\left\lceil\begin{array}{ll}1 & 2\end{array}\right\rceil$

$$
\left\lfloor\begin{array}{ll}
-1 & 3 \\
\hline
\end{array}\right.
$$

(iii) \quad Let $A=\left|\begin{array}{rrr}-1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1\end{array}\right|$
(Making) changing rows of A as columns of the new matrix,
we have A^{\prime} or $\mathrm{A}^{\mathrm{T}}=\left|\begin{array}{ccc}-1 & \sqrt{3} & 2 \\ 5 & 5 & 3 \\ 6 & 6 & -1\end{array}\right|$.
L 」
2. If $A=\left[\begin{array}{rrr}-1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1\end{array}\right]$ and $B=\left[\left.\begin{array}{rrr}-4 & 1 & -5 \\ 1 & 2 & 0\end{array} \right\rvert\,\right.$, then verify that
(i) $(\mathbf{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$
(ii) $(A-B)^{\prime}=A^{\prime}-B^{\prime}$.

Sol. (i) To verify $(\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$

$$
\begin{aligned}
& A+B=\left[\begin{array}{rrr}
-1 & 2 & 3 \\
5 & 7 & 9 \\
-2 & 1 & 1
\end{array}\right]+\left[\begin{array}{rrr}
-4 & 1 & -5 \\
1 & 2 & 0
\end{array}\right] \\
& \lceil-1-4 \quad 2+1 \quad 3-5\rceil \quad\lceil-5 \quad 3 \quad-2\rceil \\
& =\left|\begin{array}{lll}
& 5+1 & 7+2 \\
9+0
\end{array}\right|=\left|\begin{array}{lll}
& 9 & 9
\end{array}\right| \\
& \left.\left\lfloor\begin{array}{lll}
\lfloor-2+1 & 1+3 & 1+1
\end{array}\right\rfloor \quad \right\rvert\, \begin{array}{lll}
\mid-1 & 4 & 2 \mid\rfloor
\end{array}
\end{aligned}
$$

(Making) changing rows of $\mathrm{A}+\mathrm{B}$ as columns of the new matrix, we have
L.H.S. $=(A+B)^{\prime}=\left[\begin{array}{rrr}-5 & 6 & -1 \\ 3 & 9 & 4 \\ & & \vdots \\ -2 & 9 & 2\end{array}\right]$
R.H.S. $\left.=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}=\left[\begin{array}{rrr}-1 & 2 & 3\end{array}\right\rceil^{\prime} \begin{array}{rrr}5 & 7 & 9 \\ -2 & 1 & 1\end{array} \right\rvert\,+\left[\begin{array}{rrr}-4 & 1 & -5\rceil^{\prime} \\ 1 & 2 & 0 \\ 1 & 3 & 1\end{array}\right]$
$\left.=\begin{array}{c}{\left[\begin{array}{rrr}-1 & 5 & -2 \\ 2 & 7 & 1\end{array}\left|+\begin{array}{rrr}-4 & 1 & 17 \\ 1 & 2 & 3\end{array}\right|\right.} \\ \left|\begin{array}{rrr}1\end{array}\right| \\ 3\end{array}\right]$

$$
\begin{align*}
& \lceil-1-4 \quad 5+1 \quad-2+1\rceil \begin{array}{llll}
-5 & 6 & -1 \\
\hline
\end{array} \\
& = \begin{cases}\left.\left|\begin{array}{lll}
2+1 & 7+2 & 1+3 \\
3-5 & 9+0 & 1+1
\end{array}\right|=\left\lvert\, \begin{array}{lll}
3 & 9 & 4 \\
-2 & 9 & 2
\end{array}\right.\right]\end{cases} \tag{ii}
\end{align*}
$$

From (i) and (ii), we have L.H.S. $=$ R.H.S.
i.e.,

$$
(\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}
$$

(ii) To verify $(\mathrm{A}-\mathrm{B})^{\prime}=\mathrm{A}^{\prime}-\mathrm{B}^{\prime}$

$$
\begin{aligned}
& A-B=\left[\begin{array}{rrr}
-1 & 2 & 3 \\
5 & 7 & 9 \\
-2 & 1 & 1
\end{array}\right]-\left[\begin{array}{rrr}
-4 & 1 & -5 \\
1 & 2 & 0 \\
1 & 3 & 1
\end{array}\right] \\
& =\left[\left.\begin{array}{cc}
-1+4 & 2-1 \\
\hline & 3+5 \\
5-1 & 7-2 \\
\mathbf{D C U S T} \\
\text { ACademy }
\end{array} \right\rvert\,=\left[\left.\begin{array}{lll}
3 & 1 & 8 \\
4 & 5 & 9
\end{array} \right\rvert\,\right.\right.
\end{aligned}
$$

$$
\left\lfloor\begin{array}{lll}
-2-1 & 1-3 & 1-1
\end{array} \quad\left[\begin{array}{lll}
-3 & -2 & 0
\end{array}\right\rfloor\right.
$$

(Making) changing rows of $\mathrm{A}-\mathrm{B}$ as columns of the new matrix, we have

$$
\begin{align*}
& \left\lceil\begin{array}{lll}
3 & 4 & -3 \\
1 & 5 & -2
\end{array}\right\rceil \\
& \left.\begin{array}{rl}
\text { L.H.S. }=(\mathrm{A}-\mathrm{B})^{\prime}= & \left\lfloor\begin{array}{lll}
8 & 9 & 0
\end{array}\right] \\
& {\left[\begin{array}{lll}
-1 & 2 & 3
\end{array}\right\rceil^{\prime} \quad\lceil-4} \\
1 & 1
\end{array}\right) \tag{i}
\end{align*}
$$

From (i) and (ii), we have L.H.S. $=$ R.H.S.
Note ($\left.\mathrm{A}^{\prime}\right)^{\prime}=\mathbf{A}$.

$$
\begin{array}{ll}
\lceil 3 & 4 \\
\hline
\end{array} \quad\lceil-1) 217
$$

3. If $A^{\prime}=\left|\begin{array}{ll}-1 & 2\end{array}\right|$ and $B=\left|\begin{array}{lll}1 & 2 & 3\end{array}\right|$, then verify that

$$
\begin{aligned}
& \left\lfloor\begin{array}{ll}
0 & 1
\end{array}\right\rfloor \\
& \text { (i) }(\mathbf{A}+\mathbf{B})^{\prime}=A^{\prime}+B^{\prime} \\
& \text { (ii) }(\mathbf{A}-\mathbf{B})^{\prime}=\mathbf{A}^{\prime}-\mathbf{B}^{\prime} \text {. }
\end{aligned}
$$

Sol. Given: $A^{\prime}=\left[\left.\begin{array}{rr}3 & 4 \\ -1 & 2\end{array} \right\rvert\,\right.$ and $B=\left|\begin{array}{lll}-1 & 2 & 1\end{array}\right|$

Making rows of A^{\prime} as columns of the new matrix (transpose of A^{\prime} i.e., $\left.\left(\mathrm{A}^{\prime}\right)^{\prime}\right)$ i.e., $\mathrm{A}=\begin{array}{lll}3 & \mathbf{- 1} & \mathbf{0}\rceil\end{array}$

$$
\begin{aligned}
& \text { (i) } \mathrm{A}+\mathrm{B}=\left[\begin{array}{rrr}
3 & -1 & \mathrm{O} \\
{[4} & 2 & 1 \\
\hline & 2 & 1 \\
4 & \\
\hline
\end{array}+\begin{array}{rrr}
-1 & 2 & 1 \\
1 & 2 & 3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { R.H.S. }=\left.\mathrm{A}^{\prime}+\mathrm{B}^{\prime}=\begin{array}{rr}
3 & 4 \\
-1 & 2
\end{array}|+| \begin{array}{lll}
\lceil-1 & 2 & 1
\end{array}\right\rceil^{\prime} \\
& \mid\left.\left\lvert\, \begin{array}{lll}
1 & 2 & 3
\end{array}\right.\right\rfloor \\
& \text { (given) }
\end{aligned}
$$

From (i) and (ii), we have L.H.S. $=$ R.H.S.
(ii) $\mathrm{A}-\mathrm{B}=\left[\begin{array}{lrr}3 & -1 & 0 \\ \left|\begin{array}{lll}4 & 2 & 1\end{array}\right|-\left[\left.\begin{array}{rrr}-1 & 2 & 1 \\ 1 & 2 & 3\end{array} \right\rvert\,\right.\end{array}\right.$

$$
\left\lfloor\begin{array}{lll}
\lfloor & 1 & 2
\end{array}\right]
$$

$\left[\begin{array}{ll}0 & 1\end{array}\right]$
(given)

$$
\begin{array}{rlll}
\lfloor 3 & 0 & -2\rfloor & \mid \tag{i}\\
\text { R.H.S. }=A^{\prime}-B^{\prime}=\begin{array}{rr}
3 & 4\rceil \\
\left|\begin{array}{lll}
\\
-1 & 2
\end{array}\right| & \left.\begin{array}{lll}
\lfloor-1 & 1
\end{array} \right\rvert\,
\end{array}
\end{array}
$$

$\mathrm{From}_{-2}{ }^{(i)} \mathbf{3}^{\text {and }}$ (ii), we have L.H.S. $=$ R.H.S.
4. If $\mathbf{A}^{\prime}=\left\{\left.\begin{array}{rr}\mathbf{1} & \mathbf{2}\end{array} \right\rvert\,\right.$ and $\mathbf{B}=\left\{\left.\begin{array}{rr}\mathbf{1} & \mathbf{0}\end{array} \right\rvert\,\right.$, then find $(\mathbf{A}+\mathbf{2 B})^{\prime}$.

Sol. Given: $A^{\prime}=\lceil-2 \quad 3\rceil$ and $B=\lceil-1 \quad 0\rceil$

Making rows of A^{\prime} as columns of the new matrix (transpose of A^{\prime} ie., $\left.\left(\mathrm{A}^{\prime}\right)^{\prime}\right)$ ie., $\mathrm{A}=\lceil-2 \quad 1\rceil$

$$
\begin{aligned}
\therefore \quad A+2 B & =\left[\begin{array}{rr}
-2 & 17 \\
3 & 2
\end{array} \left\lvert\,+2\left[\begin{array}{rr}
-1 & 0 \\
1 & 2
\end{array}\right]=\left[\begin{array}{rr}
-2 & 1 \\
3 & 2
\end{array}\right]+\left[\begin{array}{rr}
-2 & 0 \\
2 & 4
\end{array}\right]\right.\right. \\
& =\left[\begin{array}{ll}
-2-2 & 1+0 \\
3+2 & 2+4
\end{array}\right]=\left[\begin{array}{ll}
-4 & 1 \\
5 & 6
\end{array}\right] \\
& \left\lfloor\begin{array}{ll}
&
\end{array}\right.
\end{aligned}
$$

Making rows of this matrix as columns of new matrix, we have

$$
(A+2 B)^{\prime}=\lceil-4 \quad 5\rceil
$$

5. For the matrices A and B, verify that $(A B)^{\prime}=B^{\prime} A^{\prime}$, where
(i) $A=|-4|, B=\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right]$
$\lceil 0\rceil$
$\lfloor\lfloor 3 \mid$
(ii) $A={ }_{1} \left\lvert\,, B=\left[\begin{array}{ll}1 & 5\end{array}\right]\right.$.
$2]$
$\lceil 1\rceil$

Sol.
(i) Given: $\mathrm{A}=|-4|$ and $\mathrm{B}=\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right]$
$\left\lfloor 3{ }^{\lfloor }\right\rfloor$
$\therefore \quad \mathrm{AB}=\left[\begin{array}{r}1 \\ -4 \\ 3\end{array}\right]_{3 \times 1}$

$$
3 \times 3 \text { and }=\left[\begin{array}{rrr}
-1 & 2 & 1 \\
4 & -8 & -4 \\
-3 & 6 & 3
\end{array}\right]
$$

(Using row by column multiplication rule)

From (i) and (ii), we have L.H.S. $=$ R.H.S. ie., $(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}$.
(ii) Given: $A=\left[\begin{array}{l}{[\mathrm{O}} \\ 1 \\ 2\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 5 & 7\end{array}\right]$

$$
\text { R.H.S. }=\beta^{\prime} A^{\prime}=\left[\begin{array}{lll}
1 & 5 & 7
\end{array}\right]^{\prime}\left|={ }_{10}\right|^{5}
$$

$$
\begin{align*}
& \therefore \quad \mathrm{AB}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 5 & 7
\end{array}\right]_{1 \times 3}=\left[\begin{array}{lll}
\mathrm{O} & 0 & 0 \\
1 & 5 & 7
\end{array}\right] \\
& \lfloor 2\rfloor_{3 \times 1} \quad\left\lfloor\begin{array}{lll}
2 & 10 & 14
\end{array}\right\rfloor \\
& \begin{array}{llllll}
\mathrm{o} & \mathrm{o} & \mathrm{o}
\end{array}{ }^{\prime} \quad\left\lceil\begin{array}{lll}
\mathrm{o} & 1 & 2
\end{array}\right] \\
& \text { L.H.S. }=(A B)^{\prime}=\left|\begin{array}{rrr}
1 & 5 & 7 \\
2 & 10 & 14
\end{array}\right|=\left|\begin{array}{lll}
0 & 5 & 10 \\
{\left[\left.\begin{array}{lll}
0 & 7 & 14
\end{array} \right\rvert\,\right.}
\end{array}\right| \tag{i}\\
& \lceil\mathrm{o}\rceil^{\prime}\lceil 1\rceil \\
& 1
\end{align*}
$$

Class 12
Chapter 3 - Matrices

【2」

From (i) and (ii) we have L.H.S. $=$ R.H.S.
i.e., $\quad(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}$.

Remark. Result to remember form this Q.No. 5:

$$
(A B)^{\prime}=B^{\prime} A^{\prime} \quad \mid \text { Reversal Law }
$$

6. (i) If $A=\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \end{array}$, then verify that $A^{\prime} A=$ I

(ii) If $\mathbf{A}=\left[\right.$	\cos
$\left.\begin{array}{cc}\boldsymbol{\operatorname { s i n }} \alpha & \begin{array}{c}\boldsymbol{\operatorname { c o s }} \alpha \\ \boldsymbol{\operatorname { c o s }} \alpha \\ \boldsymbol{\operatorname { s i n }} \alpha\end{array}\end{array} \right\rvert\,$, then verify that $A^{\prime} \mathbf{A}=\mathbf{I}$.

Sol.
(i) Given: $\mathrm{A}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ \left.\left\lvert\, \begin{array}{rr}\sin \alpha & \cos \alpha \\ \lfloor \end{array}\right.\right]\end{array}\right.$
$\therefore \quad$ L.H.S. $=\mathrm{A}^{\prime} \mathrm{A}=\begin{array}{r}\lceil\cos \alpha \\ \sin \alpha\rceil^{\prime}\lceil \\ \left.\left|\begin{array}{rr}\cos \alpha & \sin \alpha\rceil \\ -\sin \alpha & \cos \alpha\end{array}\right| \begin{aligned} & \sin \alpha \\ & \cos \alpha\end{aligned} \right\rvert\,\end{array}$ $=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha\rceil \\ \sin \alpha & \cos \alpha\end{array}\left|\begin{array}{cc}\cos \alpha & \sin \alpha\rceil \\ -\sin \alpha & \cos \alpha\end{array}\right|\right.$
$\cos ^{2} \alpha+\sin ^{2} \alpha$ $\cos \alpha \sin \alpha-\sin \alpha \cos \alpha\rceil$ $=\mid \sin \alpha \cos \alpha-\cos \alpha \sin \alpha \quad \sin ^{2} \alpha+\cos ^{2} \alpha$ (Row by Column Multiplication)

$$
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2}(=I)=\text { R.H.S. }
$$

(ii) Given: $\left.A=\begin{array}{r}\sin \alpha \\ \cos \alpha \\ -\cos \alpha \\ \sin \alpha\end{array}\right\rfloor$

7. (i) Show that the matrix $A=\left.\right|_{-1} \quad 2 \quad 1 \mid$ is a $\left\lfloor\left.\begin{array}{lll} & 5 & 1 \\ 3\end{array} \right\rvert\,\right.$
symmetric matrix.
(ii) Show that the matrix $A=\left[\begin{array}{rrr}0 & 1 & -1 \\ -1 & 0 & 1\end{array}\right]$ is a skew-
symmetric matrix.
$\begin{array}{lll}1 & -1 & 0\end{array}$

Sol. (i) Given: $\mathrm{A}=\left[\left.\begin{array}{rrr}1 & -1 & 5 \\ -1 & 2 & 1\end{array} \right\rvert\,\right.$

$$
\left\lfloor\begin{array}{lll}
\mid l & 5 & 1 \tag{i}
\end{array} 3^{\mid}\right\rfloor
$$

(Making) changing rows of matrix A as the columns of the

$$
\left.\begin{aligned}
& \text { new matrix } \mathrm{A}^{\prime}=\left|\begin{array}{rrr}
1 & -1 & 5 \\
-1 & 2 & 1
\end{array}\right|=\mathrm{A} \\
& \therefore \quad \mathrm{~A}^{\prime}=\mathrm{A}
\end{aligned} \quad \right\rvert\, \begin{array}{lrl}
\left.\left\lvert\, \begin{array}{lll}
& 1 & 3
\end{array}\right.\right]
\end{array}
$$

\therefore By definition of symmetric matrix, A is a symmetric matrix.
(ii) Given: Matrix $A=\left[\left.\begin{array}{rrr}0 & 1 & -1 \\ -1 & 0 & 1\end{array} \right\rvert\,\right.$

$$
\begin{align*}
& \tag{i}\\
& \therefore A^{\prime}=
\end{align*} \begin{array}{ccc}
{\left[\begin{array}{ccc}
1 & -1 & 0
\end{array}\right]} \\
\left.\left\lvert\, \begin{array}{lll}
0 & 1 & -1
\end{array}\right.\right\rceil^{\prime} \\
-1 & 0 & 1
\end{array}\left|=\left|\begin{array}{rrr}
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right|\right.
$$

Taking (-1) common from R.H.S. of A^{\prime}, we have

$$
\mathrm{A}^{\prime}=-\left[\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]=-\mathrm{A}
$$

$$
\left.\begin{array}{lll}
1 & -1 & 0
\end{array}\right]
$$

\therefore By definition, matrix A is a skew-symmetric matrix.
8. For the matrix $A=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]$, verify that
(i) $\left(A+A^{\prime}\right)$ is a symmetric matrix.
(ii) ($\mathrm{A}-\mathrm{A}^{\prime}$) is a skew symmetric matrix.

Sol.
(i) Given: $\mathrm{A}=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]$

Let $\mathrm{B}=\mathrm{A}+\mathrm{A}^{\prime}=\mathrm{A}+\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]^{\prime}=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]+\left[\begin{array}{ll}1 & 6 \\ 5 & 7\end{array}\right]$

$$
=\left[\begin{array}{ll}
1+1 & 5+6 \tag{i}\\
6+5 & 7+7
\end{array}\right]=\left[\begin{array}{rr}
2 & 11 \\
11 & 14
\end{array}\right]
$$

$\therefore \quad \mathrm{B}$ i.e., $\left(\mathrm{A}+\mathrm{A}^{\prime}\right)$ is a symmetric matrix.
(ii) Given: $\mathrm{A}=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]$

Let $\quad \mathrm{B}=\mathrm{A}-\mathrm{A}^{\prime}=\mathrm{A}-\left[\begin{array}{ll}\mathbf{1} & 5 \\ 6 & 7\end{array}\right]^{\prime}$

$$
=\left[\begin{array}{ll}
1 & 5 \\
6 & 7
\end{array}\right]-\left[\begin{array}{ll}
1 & 6 \\
5 & 7
\end{array}\right]=\left[\begin{array}{ll}
1-1 & 5-6 \\
6-5 & 7-7
\end{array}\right]
$$

$$
\begin{array}{ll}
\text { or } & B=\left\lceil\begin{array}{ll}
0 & -1 \\
\hline
\end{array}\right. \\
\therefore & \left.B^{\prime}=\begin{array}{|cc|}
\hline 0 & 0
\end{array}\right] \tag{i}\\
& -1\rceil^{\prime}
\end{array}=\left\lceil\begin{array}{ll}
0 & 1 \\
\hline
\end{array}\right.
$$

$$
\left[\begin{array}{ll}
1 & 0
\end{array}\right\rfloor\left[\begin{array}{ll}
{[-1} & 0
\end{array}\right\rfloor
$$

Taking (-1) common from R.H.S. of B^{\prime},

$$
\mathrm{B}^{\prime}=-\left[\left.\begin{array}{ll}
0 & -1 \\
1 & 0
\end{array} \right\rvert\,=-\mathrm{B} \quad[\mathrm{By}(i)]\right.
$$

$\therefore \quad$ Matrix B ie., $\mathrm{A}-\mathrm{A}^{\prime}$ is a skew symmetric matrix.

$$
\underline{1} \quad 1 \quad\left[\left.\begin{array}{rrr}
0 & a & b \\
a & 0 & c
\end{array} \right\rvert\,\right.
$$

9. Find $2_{2}\left(A+A^{\prime}\right)$ and ${ }_{2}\left(A-A^{\prime}\right)$ when $A=\left|\begin{array}{lll}\mid \\ \mid-b-c & 0\end{array}\right|$.

$$
\left\lceil\begin{array}{lll}
0 & a & b\rceil
\end{array}\right.
$$

Sol. Given:

$$
\left.\begin{array}{rl}
\mathrm{A}= & \left.\begin{array}{ccc}
-a & \mathrm{o} & c
\end{array} \right\rvert\, \\
& \left.\left\lvert\, \begin{array}{ccc}
\\
-b & -c & 0
\end{array}\right.\right] \\
& \left\lceil\begin{array}{ccc}
\mathrm{o} & a & b\rceil^{\prime}
\end{array}\lceil\mathrm{o}\right. \\
-a & -b\rceil
\end{array}\right]
$$

$$
\therefore \quad \mathrm{A}^{\prime}=\left|\begin{array}{lll}
-a & 0 & c^{\prime}
\end{array}=\left|\begin{array}{lll}
a & 0 & -c
\end{array}\right|\right.
$$

$$
\left[\begin{array}{ccc}
-b & -c & 0
\end{array}\right] \quad\left[\begin{array}{ccc}
b & c & 0
\end{array}\right]
$$

$$
\therefore \quad \mathrm{A}+\mathrm{A}^{\prime}=\left|\begin{array}{lll}
-a & 0 & c^{\mid}+\mid a
\end{array} \quad 0 \quad-c\right|
$$

$$
\left.\begin{array}{l}
\left\lfloor\begin{array} { c c c }
{ \lfloor - b } & { - c } & { 0 } \\
{ \hline }
\end{array} \quad \left\lfloor\begin{array}{lll}
b & c & 0 \\
\hline
\end{array}\right.\right. \\
\begin{array}{llll}
0+0 & a-a & b-b\rceil & \lceil 0
\end{array} 0 \\
\hline 0
\end{array}\right)
$$

$$
=\left\{\begin{array} { c c c }
{ - a + a } & { 0 + 0 } & { c - c } \\
{ - b + b } & { - c + c } & { 0 + 0 }
\end{array} \left|=\left|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right|\right.\right.
$$

$$
\left.\therefore \quad \frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right)=\frac{1}{2}\left[\begin{array}{lll}
\mathrm{o} & 0 & 0 \\
0 & 0 & 0 \\
\mathrm{O} & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right\rfloor
$$

Again $\mathrm{A}-\mathrm{A}^{\prime}=\left\lceil\begin{array}{rll}\mathrm{o} & a & b \\ -a & \mathrm{o} & c\end{array}\right\rceil-\left\lceil\begin{array}{rrr}\mathrm{O} & -a & -b \\ a & \mathrm{o} & -c\end{array}\right\rceil$

Class 12

$$
=\begin{array}{ccc}
-a-a & 0-0 & c+c \\
-b-b & -c-c & 0-0
\end{array}\left|=\begin{array}{ccc}
\text { Chapter 3-Matrices } \\
-2 a & 0 & 2 c \\
-2 b & -2 c & 0
\end{array}\right|
$$

Multiplying each entry by

$$
\begin{aligned}
& \underline{\mathbf{1}},=\begin{array}{ccc}
\lfloor-2 b & -2 c \\
\mathbf{0} & a & b \\
-a & 0 & c
\end{array} . \\
& \mathbf{2}\left[\begin{array}{ccc}
\\
-b & -c & 0
\end{array}\right\rfloor
\end{aligned}
$$

10. Express the following matrices as the sum of a symmetric and skew symmetric matrix:
$\left.\begin{array}{ll} & 3 \\ \hline\end{array}\right]$
$\left\lceil\begin{array}{lll}6 & -2 & 2\end{array}\right.$
(i) $\left\lfloor\begin{array}{ll}1 & -1\end{array}\right\rfloor$

(ii) | | -2 | 3 |
| :--- | :--- | :--- |$|$

$\left[\begin{array}{lll}2 & -1 & 3\end{array}\right]$
$\left\lceil\begin{array}{lll}3 & 3 & -1\end{array}\right\rceil$
(iii) $\left|\begin{array}{lll}-2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right|$
(iv) $\left[\begin{array}{rr}1 & 5 \\ -1 & 2\end{array}\right]$

Note Formula. Every square matrix \mathbf{A} can be expressed as the sum of a symmetric matrix $\left.\mathcal{I}^{1}+A^{\prime}\right)$ and skew 2
symmetric matrix $\frac{1}{2}\left(A-A^{\prime}\right)$.
Sol. (i) Given: Matrix (say) $\mathrm{A}=\left\lceil\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right\rceil$
therefore, $\mathrm{A}^{\prime}=\left[\begin{array}{rr}3 & 5 \\ 1 & -1\end{array}\right]^{\prime}=\left[\begin{array}{rr}3 & 1 \\ 5 & -1\end{array}\right]$
By Formula above, symmetric matrix part of A

$$
\begin{align*}
& \underline{1} \\
= & 2_{2}\left(\mathbf{A}+\mathbf{A}^{\prime}\right)= \\
2 & \left(\begin{array}{lr}
\mid & 5 \\
1 & -1
\end{array} \left\lvert\, \begin{array}{ll}
3 & 1\rceil) \\
5 & -1
\end{array}\right.\right) \tag{i}\\
= & \frac{1}{2}\left(\begin{array}{rr}
6 & 6 \\
6 & -2
\end{array}\right) \neq\left[\begin{array}{rr}
3 & 3 \\
3 & -1
\end{array}\right]
\end{align*}
$$

and skew symmetric matrix part of A .
\therefore Given matrix A is sum of matrices (i) and (ii)
$=$ symmetric m AUEEB7 + skew symmetric matrix
$\left\lfloor\begin{array}{ll}3 & -1 \\ & \rfloor\end{array}\right.$

$$
\left[\begin{array}{rr}
0 & 2 \\
-2 & 0
\end{array}\right] .
$$

(ii) Given: matrix say $A=\left[\left.\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1\end{array} \right\rvert\,\right.$

```
                                    \lllll
```

\therefore Symmetric part of $A=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\prime}\right)$
and skew symmetric part of $A=\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\prime}\right)$

$$
=\frac{\mathbf{1}}{2}\left[\left.\begin{array}{rrr}
6-6 & -2+2 & 2-2 \\
-2+2 & 3-3 & -1+1 \\
2-2 & -1+1 & 3-3
\end{array} \right\rvert\,\right\rfloor
$$

$$
\left.=\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 0 \tag{ii}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

\therefore Given matrix $\mathrm{A}=$ sum of matrices (i) and (ii)

$$
=\text { symmetric matrix } \begin{array}{rrr}
{\left[\left.\begin{array}{rrr}
6 & -2 & 2 \\
-2 & 3 & -1
\end{array} \right\rvert\,\right.} \\
\left\lfloor\begin{array}{rrr}
2 & -1 & 3
\end{array}\right\rfloor
\end{array}
$$

+ skew symmetric matrix $\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.

$$
\begin{align*}
& =\frac{1}{2}\left(\left[\begin{array}{rrr}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]+\left[\begin{array}{rrr}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]\right) \\
& =\begin{array}{r}
1
\end{array}\left|\begin{array}{rrr}
12 & -4 & 4\rceil \\
-4 & 6 & -2
\end{array}\right|=\left|\begin{array}{rrr}
6 & -2 & 2\rceil \\
-2 & 3 & -1
\end{array}\right| \tag{i}\\
& \left.4-2 \quad 6\rfloor\rfloor \quad \begin{array}{llll}
\mid & 2 & -1 & 3
\end{array}\right\rfloor
\end{align*}
$$

$$
\begin{aligned}
& \left\lceil\begin{array}{lll}
6 & -2 & 2\rceil^{\prime}
\end{array} \begin{array}{llll}
6 & -2 & 2
\end{array}\right] \\
& \therefore \quad \mathrm{A}^{\prime}=|-2 \quad 3 \quad-1|=\left\lvert\, \begin{array}{lll}
-2 & 3 & -1
\end{array}\right.
\end{aligned}
$$

(iii) Given: matrix say $A=\left\lfloor\left.\begin{array}{ccc}-2 & -2 & 1 \\ -4 & -5 & 2\end{array} \right\rvert\,\right.$

$$
\begin{aligned}
& \left\lceil\begin{array}{lll}
3 & 3 & -1
\end{array}\right\rceil \quad\left\lceil\begin{array}{lll}
3 & -2 & -4
\end{array}\right] \\
& \therefore \quad A^{\prime}=\left|\begin{array}{lll}
-2 & -2 & 1
\end{array}\right|=\left|\begin{array}{lll}
3 & -2 & -5
\end{array}\right| \\
& \left\lfloor\begin{array}{lll}
-4 & -5 & 2
\end{array}\right\rfloor\left[\begin{array}{lll}
-1 & 1 & 2
\end{array}\right]
\end{aligned}
$$

\therefore Symmetric part of $A=\frac{\mathbf{1}}{2}\left(\mathbf{A}+\mathbf{A}^{\prime}\right)$
and skew symmetric part of $\mathrm{A}=\frac{\mathbf{1}}{2}\left(\mathbf{A}-\mathbf{A}^{\prime}\right)$

$$
\begin{aligned}
& =1\left(\left[\begin{array}{rrr}
3 & 3 & -1 \\
-2 & -2 & 1
\end{array} \left\lvert\,-\left[\left.\begin{array}{rrr}
3 & -2 & -4 \\
3 & -2 & -5
\end{array} \right\rvert\,\right)\right.\right.\right. \\
& \left.2\left(\left.\left\lfloor\left\lvert\, \begin{array}{rrr}
\\
-4 & -5 & 2
\end{array}\right.\right] \right\rvert\, \begin{array}{rrr}
-1 & 1 & 2
\end{array}\right]\right) \\
& \left.=\frac{1}{2} \left\lvert\, \begin{array}{rrr}
3-3 & 3+2 & -1+4 \\
-2-3 & -2+2 & 1+5 \\
-4+1 & -5-1 & 2-2
\end{array}\right.\right]
\end{aligned}
$$

$$
\left\lceil\begin{array} { c c c }
{ 3 - 3 } & { 3 + 2 } & { - 1 + 4 }
\end{array} \left\lceil\left[\begin{array}{lll}
0 & \frac{5}{2} & \frac{3}{2}
\end{array}\right]\right.\right.
$$

$$
=\frac{1}{2}\left\lfloor\begin{array} { l l l }
{ - 2 - 3 } & { - 2 + 2 } & { 1 + 5 } \tag{ii}\\
{ - 4 + 1 } & { - 5 - 1 } & { 2 - 2 \rrbracket }
\end{array} \left|=\left|\begin{array}{rcc}
-\frac{5}{2} & 0 & 3 \\
3 & -3 & 0 \\
2 & & \vdots
\end{array}\right|\right.\right.
$$

\therefore Given matrix $\mathrm{A}=$ sum of matrices (i) and (ii)

$$
\left.=\text { symmetric matrix } \left\lvert\, \begin{array}{ccc}
3 & \underline{1} & -\frac{5}{2} \\
\underline{1} & 2 & 2 \\
2 & -2 & -2 \\
-5 & -2 & 2
\end{array}\right.\right]
$$

	$\left[\begin{array}{llll} & 5 & 3 & 3 \\ 0 & 2 & 2\end{array}\right]$
	-5_3
Academy	$2 L^{-2}$

$$
\begin{align*}
& =\frac{1}{2} \left\lvert\,\left(\left[\begin{array}{rrr}
3 & 3 & -1 \\
2
\end{array}| | \begin{array}{rrr}
2 & -2 & 1 \\
-4 & -5 & 2
\end{array}\right]+\left[\begin{array}{rrr}
3 & -2 & -4 \\
3 & -2 & -5
\end{array}| | \begin{array}{lll}
\\
-1 & 1 & 2
\end{array}\right]\right)\right. \\
& { }_{1}\left\lceil\begin{array}{rrr}
6 & 1 & -5\rceil
\end{array} \left\lvert\, \begin{array}{rrr}
3 & \underline{1} & -5 \\
\underline{1} & 2 & 2
\end{array}\right.\right\rceil \\
& \left.=\stackrel{\underline{1}}{ }\left|\begin{array}{llll}
6 & 1 & -5
\end{array}\right| \begin{array}{lll}
\underline{1} & & \\
1 & -4 & -4
\end{array} \right\rvert\, \tag{i}\\
& 2\left\lfloor\begin{array} { l l l }
{ 1 } & { - 4 } & { 4 }
\end{array} \left|\left|\begin{array}{ccc}
2 & & \\
-5 & -2 & 2
\end{array}\right|\right.\right. \\
& \text { ! } 2 \text { |」 }
\end{align*}
$$

(iv) Given: matrix say $\mathrm{A}=$| $\mathbf{1}$ | 5 |
| :---: | :---: |
| | |
| | $\left.\therefore \mathrm{~A}^{\prime}=\begin{array}{ll} & \\ 1 & 5\end{array}\right\rceil^{\prime}=\left\lceil\begin{array}{ll}\mathbf{1} & -1\end{array}\right\rceil$ |

$$
\left\lfloor\begin{array}{ll}
-1 & 2 \\
-1 & 2 \\
-1
\end{array} \begin{array}{ll}
5 & 2
\end{array}\right.
$$

\therefore Symmetric part of $A=\frac{1}{2}\left(A+A^{\prime}\right)$

$$
\left.\begin{array}{rl}
= & 1\left(\begin{array}{cc}
1 & 5 \\
\hline
\end{array}+\begin{array}{cc}
1 & -1\rceil)
\end{array}=\frac{1}{}\lceil 2\right. \\
4
\end{array}\right\rceil \left.=\begin{array}{ll}
1 & 2 \\
\hline
\end{array} \right\rvert\,
$$

$$
\lfloor\quad\rfloor \quad\lfloor 2 \quad 2\rfloor
$$

and skew symmetric part of $\mathrm{A}=\frac{\mathbf{1}}{\mathbf{2}}\left(\mathbf{A}-\mathbf{A}^{\prime}\right)$

$$
2\left\lfloor\begin{array} { l l }
{ - 6 } & { 0 } \\
{ \hline }
\end{array} \left\lfloor\begin{array}{ll}
-3 & 0 \\
\hline
\end{array}\right.\right.
$$

\therefore Given matrix $=$ Sum of matrices (i) and (ii)

$$
=\text { Symmetric matrix }\left[\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right]
$$

+ skew-symmetric matrix | | 0 | 3 |
| :--- | :--- | :--- | .

$$
\left\lfloor\begin{array}{ll}
-3 & 0 \\
\hline
\end{array}\right.
$$

Choose the correct answer in Exercises 11 and 12
11. If A and B are symmetric matrices of same order, $A B-B A$ is a
(A) Skew-symmetric matrix
(B) Symmetric Matrix
(C) Zero matrix
(D) Identity matrix.

Sol. Given: A and B are symmetric matrices

$$
\begin{equation*}
\Rightarrow \quad \mathrm{A}^{\prime}=\mathrm{A} \text { and } \mathrm{B}^{\prime}=\mathrm{B} \tag{i}
\end{equation*}
$$

Now $\quad(\mathrm{AB}-\mathrm{BA})^{\prime}=(\mathrm{AB})^{\prime}-(\mathrm{BA})^{\prime} \quad\left[.(\mathrm{P}-\mathrm{Q})^{\prime}=\mathrm{P}^{\prime}-\mathrm{Q}^{\prime}\right]$

$$
\begin{aligned}
& =\mathrm{B}^{\prime} \mathrm{A}^{\prime}-\mathrm{A}^{\prime} \mathrm{B}^{\prime} \\
& =\mathrm{BA}-\mathrm{AB} \\
& =-(\mathrm{AB}-\mathrm{BA})
\end{aligned}
$$

$\therefore(\mathrm{AB}-\mathrm{BA})$ is a skew symmetric.
Thus, option (A) is the correct answer.
12. If $A=\begin{array}{|cc|}\boldsymbol{\operatorname { c o s }} \alpha \\ \sin \alpha & -\sin \alpha\rceil\end{array}$, then $A+A^{\prime}=I$, if the value of α is

$$
\begin{aligned}
& {\underset{1}{1}}_{\left(\begin{array}{ll}
2 \\
1-1 & 5+1 \\
\hline
\end{array}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\begin{array}{lll}
\mathbf{1} \\
& 0 & 6 \\
&
\end{array}=\left\lceil\begin{array}{ll}
0 & 3
\end{array}\right\rceil
\end{aligned}
$$

(A) π
(B) $\frac{\pi}{-}$
(C) π
(D) $\frac{3 \pi}{}$.
6
3
2

Sol. Given: $\mathrm{A}=\left\lceil\begin{array}{ll}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right\rceil$
$\lfloor\quad\rfloor$
Also given $\mathrm{A}+\mathrm{A}^{\prime}=\mathrm{I}$
$\Rightarrow\left\lceil\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right\rceil+\left\lceil\begin{array}{cc}\cos \alpha & -\sin _{\sin \alpha} \alpha \\ \cos \alpha\end{array}\right\rceil^{\prime}=\mathrm{I}=\mathrm{I}_{2}$

Equating corresponding entries, we have $2 \cos \alpha=1$
$\Rightarrow \cos \alpha=\frac{1}{2}=\cos \frac{\pi}{3} \quad \therefore \quad \alpha=\frac{\pi}{3}$.
Thus, option (B) is the correct answer.

Exercise 3.4

Using elementary transformations, find the inverse of each of the matrices, if it exists in Exercises 1 to 6.

1. $\left[\begin{array}{rr}\mathbf{1} & -\mathbf{1}\rceil \\ \mathbf{2} & \rfloor^{\prime}\end{array}\right.$.

Sol. Let $A=\left[\begin{array}{rr}1 & -1 \\ 2 & 3\end{array}\right]$
We shall find A^{-1}, if it exists; by elementary (Row) transformations (only)
So we must write $\mathbf{A}=\mathbf{I A}$ only and $\operatorname{not} \mathbf{A}=\mathbf{A I}$
$\therefore \quad\left[\begin{array}{rr}1 & -1 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
(Here I is I_{2} because A is 2×2)
We shall reduce the matrix on left side to I_{2}.
Here $a_{11}=1$
Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ to make $a_{21}=0$

Operate $\mathrm{R}_{2} \rightarrow{ }^{\frac{1}{5}} \mathrm{R}_{2}$ to make $a_{22}=1$

$$
\therefore \quad\left\lceil\begin{array}{cc}
1 & -1
\end{array}\right\rceil=\left\lceil\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]_{\mathrm{A}}
$$

$$
\left\lfloor\begin{array} { l l }
{ 0 } & { 1 } \\
{ \hline }
\end{array} \quad \left\lfloor\begin{array}{ll}
5 & 5 \\
\hline
\end{array}\right.\right.
$$

Now operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}$ to make $a_{12}=0$

$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left(=I_{2}\right)=\left[\begin{array}{cc}\underline{3} & \underline{1} \\ 5 & 5 \\ \frac{-2}{5} & \frac{1}{5}\end{array}\right] \mathrm{A}$
$\therefore \quad$ By definition of inverse of a matrix, $A^{-1}=\left[\left.\begin{array}{cc}52 & \underline{5} \\ 5 & 5\end{array} \right\rvert\,\right.$
Note. Any row operation done on left hand side matrix must also be done on the prefactor I_{2} of right hand side matrix.
Note. Definition of inverse of a square matrix. A square matrix B is said to be inverse of a square matrix A if $\mathbf{A B}=\mathbf{I}$ and $\mathbf{B A}=\mathbf{I}$. Then $\mathrm{B}=\mathrm{A}^{-1}$.
Remark. If the student is interested in finding A^{-1} by elementary column transformations, then he or she should start with A = AI and apply only column operations.
2. $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$.

Sol. Let $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$
We know that $A=I_{2} A \Rightarrow\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Operate $\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2}$ (to make $a_{11}=1$)
$\Rightarrow \quad\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \mathrm{A}$
Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ (to make $a_{21}=0$)
$\Rightarrow \quad\left[\begin{array}{cc}1 & 1 \\ 2-2 & 1-2\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ 1-0 & 0-2\end{array}\right] \mathrm{A}$
$\Rightarrow \quad\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & -\frac{2}{2}\end{array} \mathrm{~A}\right.$
Operate $\mathrm{R}_{2} \rightarrow(-1) \mathrm{R}_{2}$ (to make $a_{22}=1$)
\Rightarrow

Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}$ (to make $a_{12}=0$)
\Rightarrow
$\left\lceil 1 \begin{array}{ll}1 & 0\end{array}\right\rceil(=\mathrm{I})=\begin{array}{ll}1 & -1 \\ \mathrm{~A}\end{array}$

$\left\lfloor\begin{array}{ll}0 & 1\end{array}\right\rfloor \quad 2$| -1 | 2 |
| :--- | :--- |

$\therefore \quad$ By definition of inverse of a square matrix, $\mathrm{A}^{-1}=\left\lceil\begin{array}{ll}1 & -1\end{array}\right\rceil$

$$
t_{-1} \quad 2^{\dagger}
$$

3. $\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$.

Sol. Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$
We know that $A=I_{2} A \Rightarrow\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Here $a_{11}=1$. To make $a_{21}=0$, let us operate $R_{2} \rightarrow R_{2}-2 R_{1}$.

$$
\Rightarrow\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right] \mathrm{A}\left|\begin{array}{rr}
\mathrm{R}_{2} \rightarrow 2 & 7 \\
2 \mathrm{R}_{1} \rightarrow 2 & 6 \\
- & - \\
&
\end{array}\right| \begin{array}{rr}
\\
\hline \mathrm{R}_{2}-2 \mathrm{R}_{1}=0 & 1 \\
\mathrm{R}_{2} \rightarrow 0 & 1 \\
2 \mathrm{R}_{1} \rightarrow 2 & 0 \\
- & - \\
\therefore \mathrm{R}_{2}-2 \mathrm{R}_{1}=-2 & 1
\end{array}
$$

Now $a_{22}=1$. To make a_{12} as zero, operate $R_{1} \rightarrow R_{1}-3 R_{2}$.

$$
\therefore \quad \text { By definition, } \mathrm{A}^{-1}=\lceil 7-3\rceil .
$$

$$
\vdash_{-2} \quad 1^{\dagger}
$$

4. $\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$

Sol. Set A $=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$
We know that $\mathrm{A}=\mathrm{I}_{2} \mathrm{~A} \Rightarrow\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$

$$
\begin{aligned}
& \Rightarrow \quad\left[\begin{array}{cc}
1-0 & 3-3 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1+6 & 0-3 \\
-2
\end{array}\right] \mathrm{A}
\end{aligned}
$$

$$
\begin{aligned}
& \left\lfloor\begin{array}{ll}
0 & 1
\end{array}\right\rfloor \quad 2 \quad\left\lfloor\begin{array}{ll}
-2 & 1
\end{array}\right\rfloor
\end{aligned}
$$

$$
\begin{aligned}
& \text { Class } 12 \\
& \text { Chapter } 3 \text { - Matrices }
\end{aligned}
$$

$$
\begin{aligned}
& \left\lfloor\begin{array} { l l }
{ 5 - 4 } & { 7 - 6 } \\
{ \hline }
\end{array} \left\lfloor\begin{array}{ll}
0-2 & 1-0 \\
\hline
\end{array} \quad \begin{array}{lll}
\mid 1 & 1 \\
\hline & \lfloor & \mid
\end{array}\right.\right.
\end{aligned}
$$

Now operate $\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2}$ to make $a_{11}=1$
$\Rightarrow\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]=\left[\begin{array}{rr}-2 & 1 \\ 1 & 0\end{array}\right] \mathrm{A}$

Operate $\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ to make $a_{21}=0$

$$
\Rightarrow\left\lceil\begin{array}{cc}
1 & 1 \\
2-2 & 3-2
\end{array}\left|=\left|\begin{array}{cc}
-2 & 1 \\
1+4 & 0-2
\end{array}\right| \begin{array}{ll}
\mathrm{A}
\end{array} \begin{array}{ll}
1 & 1 \\
\left|\begin{array}{ll}
& 1
\end{array}\right| \\
0 & 1
\end{array}\right|=\left\lceil\left.\begin{array}{rr}
-2 & 1 \\
5 & -2
\end{array} \right\rvert\, \mathrm{A}\right.\right.
$$

Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}$ to make $a_{12}=0$

$$
\begin{gathered}
\left.\left.\Rightarrow \quad \begin{array}{ll}
\left.\begin{array}{ll}
1 & 0 \\
\mid & 1
\end{array} \right\rvert\, \\
0 & 1
\end{array} \right\rvert\,=\mathrm{I}_{2}\right)= \\
\lfloor \\
\Rightarrow
\end{gathered}
$$

Remark. In the above solution to make $a_{11}=1$, we could also operate $R_{1} \rightarrow \frac{1}{2} R_{1}$. But for the sake of convenience and to avoid lengthy computations, we should avoid multiplying by fractions.
5. $\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$.

Sol. Let A $=\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$
We know that $\mathrm{A}=\mathrm{I}_{2} \mathrm{~A} \Rightarrow\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Let us try to make $a_{11}=1$. Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-3 \mathrm{R}_{1}$

$$
\begin{aligned}
& \left\lfloor\begin{array}{ll}
7-6 & 4-3 \\
\hline
\end{array}\left\lfloor\begin{array}{ll}
0-3 & 1-0
\end{array}\right\rfloor \quad|\quad| \begin{array}{ll}
\mid & 1
\end{array}\right. \\
& \left.\begin{array}{ll}
1 & 1 \\
\lfloor
\end{array}\right\rfloor
\end{aligned}
$$

Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}$ to make $a_{11}=1$
$\Rightarrow \quad\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{rr}4 & -1 \\ -3 & 1\end{array}\right] \mathrm{A}$
Now Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ (to make $a_{21}=0$)
$\Rightarrow \quad\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{rr}4 & -1 \\ -7 & 2\end{array}\right] \mathrm{A}$
Now $a_{12}=0$ and $a_{22}=1$.
or $\quad \mathrm{I}_{2}=$
$\therefore \quad$ By definition of inverse of a square matrix, $\mathrm{A}^{-1}=\lceil 4$
$t-7 \quad 2^{\text {t }}$
6. $\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$.

Sol. Let $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$

We know that $A=I_{2} A \Rightarrow\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Operate $\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2}$ to make $a_{11}=1$;
$\Rightarrow \quad\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]^{\mathrm{A}}$
Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ (to make $a_{21}=0$)
$\Rightarrow \quad\left[\begin{array}{cc}1 & 3 \\ 2-2 & 5-6\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ 1-0 & 0-2\end{array}\right] \mathrm{A}$
$\Rightarrow \quad\left\lceil\begin{array}{rr}1 & 3 \\ 0 & -1\end{array}\right\rceil=\left[\begin{array}{ll}0 & 1 \\ 1 & -2\end{array}\right\rceil \mathrm{A}$
Operate $\mathrm{R}_{2} \rightarrow(-1) \mathrm{R}_{2}$ to make $a_{22}=1$;
$\Rightarrow \quad\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]=\left[\begin{array}{rr}0 & 1 \\ -1 & 2\end{array}\right] \mathrm{A}$
Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-3 \mathrm{R}_{2}$ (to make $a_{12}=0$)

\therefore By Definition, $\mathrm{A}^{-1}=\left\lceil\begin{array}{ll}3 & -5\rceil\end{array}\right.$

$$
\begin{array}{ll}
\lfloor-1 & 2 \\
\hline
\end{array}
$$

Using elementary transformations, find the inverse of each of the matrices, if it exists, in Exercises 7 to 14.
7. $\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]$.

Sol. Let $A=\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]$

$$
\left\lceil 3 \begin{array}{ll}
3 & 1 \\
\hline
\end{array} \quad\lceil 10\rceil\right.
$$

$\begin{aligned} & \text { We know that } \mathrm{A}=\mathrm{I}_{2} \mathrm{~A} \Rightarrow \\ & \text { Let us try to make } a_{11}=1\end{aligned}\left[\begin{array}{ll}5 & 2\end{array}\right\rfloor=\left\lfloor\left.\begin{array}{ll}0 & 1 \\ & \end{array} \right\rvert\, \mathrm{A}\right.$
Let us try to make $a_{11}=1$.
Operate $\mathrm{R}_{1} \rightarrow 2 \mathrm{R}_{1} \Rightarrow\left[\begin{array}{ll}6 & 2 \\ 5 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
CUET

$$
\begin{aligned}
& \text { Operate } \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2} \text { (to make } a_{11}=1 \text {) } \\
& \Rightarrow \quad\left[\begin{array}{ll}
1 & 0 \\
5 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right] \mathrm{A}
\end{aligned}
$$

Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-5 \mathrm{R}_{1}$ (to make $a_{21}=0$)

$$
\begin{aligned}
\text { Operate } \mathrm{R}_{2} \rightarrow & \frac{1}{2} \mathrm{R}_{2}\left(\text { to make } a_{22}=1\right) \\
& \begin{array}{cc}
1 & 0\rceil(=\mathrm{I})= \\
\Rightarrow & \left\lfloor\begin{array}{cc}
2 & -1\rceil \mathrm{A} \\
0 & 1
\end{array}\right\rfloor
\end{array}
\end{aligned}
$$

Now a_{12} has already become zero. Therefore,

$$
A^{-1}=\begin{array}{ll}
2 & -1\rceil \\
\vdash_{-5} & 3
\end{array}
$$

8. $\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]$.

Sol. Let $A=\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]$

We know that $A=I_{2} A \Rightarrow\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}$ (to make $a_{11}=1$)
$\Rightarrow \quad\left[\begin{array}{ll}1 & 1 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right] \mathrm{A}$
Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-3 \mathrm{R}_{1}$ (to make $a_{21}=0$)

$$
\left.\Rightarrow \begin{array}{cc}
{\left[\begin{array}{cc}
1 & 1 \\
\hline
\end{array}\right.} \\
\left\lfloor\begin{array}{cc}
3-3 & 4-3 \\
\hline
\end{array}\right.
\end{array}=\begin{array}{cc}
1 & -1 \\
\hline 0-3 & 1+3 \\
\hline
\end{array} \Rightarrow \begin{array}{ll}
1 & 1 \\
\lfloor 0 & 1 \\
\hline
\end{array}=\begin{array}{cc}
1 & -1\rceil \\
\hline-3 & 4
\end{array}\right]
$$

Now a_{22} has already become 1 .
Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}$ (to make $a_{12}=0$)

$$
\begin{aligned}
& \left.\Rightarrow \quad \begin{array}{ll}
1 & 0\rceil \\
0 & 1
\end{array}\left|=\begin{array}{l}
\text { I }) \\
2
\end{array}\right| \begin{array}{cc}
1+3 & -1-4\rceil \\
-3 & 4
\end{array} \right\rvert\, \mathrm{A} \\
& \Rightarrow \quad \mathrm{I}_{2}=\begin{array}{lll}
\lfloor & \rfloor & \lfloor \\
4 & -5\rceil & \text { A. Therefore, } \mathrm{A}^{-1}= \\
& \left.\begin{array}{ll}
4 & -5
\end{array}\right]
\end{array} \\
& t-3 \quad 4^{\dagger} \quad\left\lfloor\begin{array}{ll}
-3 & 4
\end{array}\right\rfloor
\end{aligned}
$$

9. $\left[\begin{array}{rr}3 & 10 \\ 2 & \end{array}\right]$.

Sol. Let $A=\left[\begin{array}{rr}3 & 10 \\ 2 & 7\end{array}\right]$

We know that $A=I_{2} A \Rightarrow\left[\begin{array}{rr}3 & 10 \\ 2 & 7\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}$
Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}$ (to make $a_{11}=1$)
$\Rightarrow \quad\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right] \mathrm{A}$
Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ (to make $a_{21}=0$)

Now $a_{22}=1$. Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-3 \mathrm{R}_{2}$ (to make $a_{12}=0$)

$$
\begin{aligned}
& \Rightarrow \quad \begin{array}{ll}
\lceil 1 & 0 \\
\mid & 1
\end{array}\left|=\begin{array}{cc}
1+6 & -1-9 \\
-2 & 3
\end{array}\right| \mathrm{A} \\
& \Rightarrow \quad \mathrm{I}_{2}=\left\lceil\begin{array}{cc}
7 & \lfloor \\
& -10\rceil \\
\mathrm{A} \Rightarrow \mathrm{~A}^{-1}=\left\lceil\begin{array}{ll}
7 & -10\rceil
\end{array}\right]
\end{array}\right.
\end{aligned}
$$

10.

$\left\lceil\begin{array}{ll}\mathbf{3} & -1 \\ \hline\end{array}\right.$.
$\left.\begin{array}{ll}-4 & 2\end{array}\right]$
Sol. Let $\left.A=\begin{array}{rr}3 & -1 \\ -4 & 2\end{array}\right]$
We know that A = I A $\left.\Rightarrow \begin{array}{cc}\lceil 3 & -1\rceil \\ 2 & \lfloor 4 \\ -4 & 2\rfloor\end{array}=\begin{array}{ll}1 & 0\end{array}\right\rceil \mathrm{A}$
Let us try to make $a_{11}=1$
Operate $R_{1} \rightarrow R_{1}+R_{2}$.

Operate $\mathrm{R}_{1} \rightarrow(-1) \mathrm{R}_{1}$
$\Rightarrow \quad \begin{array}{cc}\left\lceil\left.\begin{array}{rr}1 & -1 \\ \mid-4 & 2 \\ \lfloor & \rfloor\end{array} \right\rvert\,\right. & \left.=\begin{array}{cc}\lceil-1 & -1\rceil \\ \mid & 1\end{array} \right\rvert\, \\ \mid\end{array}$
Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+4 \mathrm{R}_{1}$ (to make $a_{21}=0$)
$\left.\Rightarrow \quad\left|\begin{array}{ll}1 & -1 \\ 0 & -2\end{array}\right|=\begin{array}{cc}1 & -1 \\ -4 & -3\end{array} \right\rvert\, \mathrm{A}$
\lfloor
Operate $\left.\mathrm{R}_{2} \rightarrow{ }_{(-1}\right)^{\perp} \mathrm{R}_{2}$ (to make $a_{22}=1$)
(2)
$\left\lceil 1 \begin{array}{ll}1 & -1\end{array}\right\rceil \quad\lceil-1 \quad-1\rceil$
$\left.\Rightarrow \quad\right|_{0} \quad 1$ —SCWET

A
Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}$ (to make $a_{12}=0$)
$\Rightarrow \quad\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left(=I_{2}\right)=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 2 & \frac{3}{2}\end{array}\right] \mathrm{A}$
$\therefore \quad$ By definition of inverse of a matrix; $A^{-1}=\left[\begin{array}{cc}1 & \frac{1}{2} \\ 2 & \frac{3}{2} \\ 2 & 2\end{array}\right]$.
11. $\left[\begin{array}{ll}2 & -6 \\ 1 & -2\end{array}\right]$.

Sol. Let $A=\begin{array}{ll}\text { 1 } & -\mathbf{2} \\ \lfloor & -6\rceil \\ 1 & \\ & \rfloor\end{array}$
We know that $\mathrm{A}=\mathrm{I}_{2} \mathrm{~A} \Rightarrow\left[\begin{array}{ll}2 & -6 \\ 1 & -2\end{array}\right\rceil=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right\rceil_{\mathrm{A}}$
Operate $\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2}\left(\right.$ to make $\left.\left.a_{11}^{\llcorner }=1\right)\right\rfloor\rfloor$
$\Rightarrow \quad\left[\begin{array}{ll}1 & -2 \\ 2 & -6\end{array}\right\rceil=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right\rceil \mathrm{A}$

Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ (to make $\boldsymbol{a}_{21}=0$)

Operate $\mathrm{R}_{2} \rightarrow{ }^{(}-\frac{1}{1} \mathrm{R}_{2}$ (to make $a_{22}=1$)

$$
\left\lceil 1 \begin{array}{rr}
(& 2
\end{array}\right) \quad\left\lceil\begin{array}{ll}
0 & 1
\end{array}\right]
$$

$$
\Rightarrow \quad\left\lfloor\begin{array}{ll}
0 & 1
\end{array}\right\rfloor=\left\lfloor\begin{array}{|cc}
-\frac{1}{2} & 1 \\
\mathrm{~A}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { A } \\
& a_{12}=0 \\
& +2\rceil
\end{aligned}
$$

Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+2 \mathrm{R}_{2}$ (to make $a_{12}=0$)

$$
\left.\right|_{\mathrm{A}}
$$

Sol. Let $A=\lceil 6$

$$
\begin{array}{ll}
\lfloor-2 & 1 \\
\hline
\end{array}
$$

Here, A is a 2×2 matrix. So, we start with $\mathrm{A}=\mathrm{I}_{2} \mathrm{~A}$

we have $\quad\left[\left.\begin{array}{cc}1 & -\frac{1}{2} \\ -2 & 1\end{array} \right\rvert\,\right\rfloor\left[\left.\begin{array}{ll}\frac{1}{6} & 0 \\ 0 & 1\end{array} \right\rvert\, \mathrm{A}\right.$
Operating $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+2 \mathrm{R}_{1}$ to make non-diagonal entry a_{21} below a_{11} as zero,

$$
\left\lfloor\begin{array}{ll}
-2+2 & \left.1-\left.{ }_{2}\right|^{-}\right\rfloor \quad\left\lfloor\begin{array}{ll}
0+ & 1+0 \\
6 &
\end{array}\right]
\end{array}\right.
$$

or

$$
\begin{aligned}
& \lceil \\
& \left|\begin{array}{ll}
1 & \underline{1} \\
\mid & 2 \\
0 & 0
\end{array}\right|
\end{aligned} \left\lvert\,=\left[\begin{array}{cc}
\boxed{1} & 0 \\
6 & \left.\right|_{\mathrm{A}} \\
\frac{1}{3} & 1
\end{array} \mathrm{~A}^{\circ}\right.\right.
$$

Here, all entries in second row of left side matrix are zero.
$\therefore \mathrm{A}^{-1}$ does not exist.
Note. If after doing one or more elementary row operations, we obtain all 0 's in one or more rows of the left hand matrix A, then A^{-1} does not exist and we say A is not invertible.
13.
$\begin{array}{ll}\dagger & -3\end{array}$.
$\left\lfloor\begin{array}{ll}-\mathbf{1} & \mathbf{2} \\ \text { Let } A & \\ & \\ \hline\end{array}\right]$
Sol. Let A =
We know that A $\begin{array}{ll}-1 & 2 \\ = & A\end{array}\left\lceil\begin{array}{ll}2 & -3\end{array}\right\rceil=\left\lceil\begin{array}{ll}1 & 0\end{array}\right] \mathrm{A}$

$$
\left\lfloor\begin{array}{ll}
-1 & 2 \\
- & \left\lfloor\begin{array}{ll}
0 & 1 \\
\hline
\end{array}\right]
\end{array}\right.
$$

Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}$ (to make $a_{11}=1$)
$\begin{aligned} \Rightarrow & \left.\begin{array}{cc}\lceil 2-1 & -3+2 \\ -1 & 2\end{array} \right\rvert\, & =\begin{array}{cc} \\ \left\lvert\, \begin{array}{cc}1+0 & 0+ \\ 0 & 1\end{array}\right. \\ \Rightarrow & \left\lfloor\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]\end{array} & =\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \mathrm{A}\end{aligned}$
Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+\mathrm{R}_{1}$ (to make $a_{21}=0$)
$\Rightarrow \quad\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right] \mathrm{A}$
Now $a_{22}=1$. Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}$ (to make $a_{12}=0$)
$\Rightarrow \quad\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left(=I_{2}\right)=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right] \mathrm{A}$
$\therefore \quad$ By definition; $\quad A^{-1}=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$.
14. $\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]$.

Sol. Let $A=\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]$
We know that $A=I_{2} A \rightarrow\left[\begin{array}{ll}2 & 1 \\ A_{2} & \mathbf{E A d e m}_{2} \\]\end{array}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \mathrm{A}\right.$

Operate $\mathrm{R}_{1} \rightarrow \frac{1}{2} \mathrm{R}_{1}$ (to make $a_{11}=1$)
$\Rightarrow \quad\left[\begin{array}{ll}1 & 1 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}\underline{1} & 0 \\ 2 & \\ 0 & 1\end{array}\right] \mathrm{A}$

Here one row (namely second row) of the matrix on L.H.S.
contains zeros only.
Hence, A^{-1} does not exist.
Using elementary transformations, find the inverse of each of the matrices, if it exists, in Exercises 15 to 17.
15. $\left[\begin{array}{rrr}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]$.

Sol. Let $A=\left[\begin{array}{rrr}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]$
We know that $A=I_{3} A$ (we have taken I_{3} because matrix A is of order 3×3)
$\Rightarrow\left[\begin{array}{ccc}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \mathrm{A}$
Let us try to make $a_{11}=1$
Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{3}$
$\Rightarrow \quad\left[\begin{array}{rrr}-1 & -1 & 1 \\ 2 & 2 & 3\end{array} \left\lvert\,=\left[\left.\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 0\end{array} \right\rvert\, A\right.\right.\right.$
Operate $\mathrm{R}_{1} \rightarrow(-1) \mathrm{R}_{1}$ to make $a_{11}=1$
$\Rightarrow \quad\left[\begin{array}{rrr}1 & 1 & -1 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]=\left[\begin{array}{rrr}-1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \mathrm{A}$
Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1}$ (to make $a_{21}=0$ and $a_{31}=0$)

$$
\begin{aligned}
& \left.\begin{array}{lll}
1 & 1 & -1\rceil
\end{array} \begin{array}{llll}
-1 & 0 & 1
\end{array}\right] \\
& \Rightarrow\left|\begin{array}{lll}
2-2 & 2-2 & 3+2
\end{array}\right|=\left|\begin{array}{lll}
0+2 & 1-0 & 0-2
\end{array}\right| \mathrm{A}
\end{aligned}
$$

$\Rightarrow \quad\left[\begin{array}{rrr}1 & 1 & -1 \\ 0 & 0 & 5\end{array} \left\lvert\,=\left[\left.\begin{array}{rrr}-1 & 0 & 1 \\ \left|\begin{array}{rrr}2 & 1 & -2\end{array}\right| \\ \mid 0 & -5 & 5\rfloor\end{array} \right\rvert\, \begin{array}{lll}\left.\left\lvert\, \begin{array}{lll}\mid 3 & 0 & -2 \mid\end{array}\right.\right]\end{array}\right.\right.\right.$
Operate $\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3}$ (to make a_{22} non-zero)
$\left.\Rightarrow \quad\left[\begin{array}{rrr}1 & 1 & -1 \\ 0 & -5 & 5 \\ \left.\left\lvert\, \begin{array}{lll}2 & 0 & 5\end{array}\right.\right]\end{array}\right]=\begin{array}{rrr}-1 & 0 & 1 \\ 3 & 0 & -2\end{array} \right\rvert\, \mathrm{A}$
Operate $\mathrm{R}_{2} \rightarrow\left(_\frac{1}{}\right) \mathrm{R}_{2}$ to make $a_{22}=1$
(5)
$\left\lceil\begin{array}{lll}1 & 1 & -1 \\ \hline\end{array} \begin{array}{lll} & -1 & 0\end{array} 1\right\rceil$
$\left|\begin{array}{lll}0 & 1 & -1\end{array}\right| \quad \underline{3} \quad \underline{2}^{\mid}$
$\Rightarrow \quad|\quad|=\left|-l^{\underline{3}} \quad 0 \quad \underline{2}\right|_{\mathrm{A}}$
$\left\lfloor\begin{array}{lll}0 & 0 & 5!\rfloor\left|\begin{array}{ll}\mid & 5\end{array}\right|\end{array}\right.$
Operate $\mathrm{R} \rightarrow \quad\left\llcorner_{2}^{a} \quad{ }^{-2^{\downarrow}} \quad a\right.$ is already zero.

$$
\begin{aligned}
& \mathrm{R}_{1}-\mathrm{R}_{2} \text { (to make } 12=0 \text {). Here } 32
\end{aligned}
$$

$$
\begin{aligned}
& \left\lceil_{-}^{\lfloor } \begin{array}{lllll}
\lfloor & 2 & & 1 & -2\rfloor
\end{array}\right. \\
& =\left|\begin{array}{ccc}
\underline{5} & & \underline{5} \\
-\frac{2}{5} & 0 & 5
\end{array}\right| \mathrm{A}
\end{aligned}
$$

Operate $\mathrm{R}_{3} \rightarrow \frac{1}{5} \mathrm{R}_{3}\left(\right.$ to make $\left.a_{33}=1\right)$

$\left\lfloor\begin{array}{lll} & & - \\ 5 & 5 & 5\end{array}\right]$
Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+\mathrm{R}_{3}$ (to make $a_{23}=0$). Here a_{13} is already zero.
$\Rightarrow \quad\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccc}-\frac{2}{5} & 0 & \underline{3} \\ \text { Acadsensy } \\ 0\end{array}\right] \mathrm{A}$

Class 12

$$
\mathrm{A}^{-1}=\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
5 & 5 & - \\
-\frac{2}{5} & 0 & \underline{3} \\
5 & & 5 \\
-\frac{1}{5} & \underline{1} & 0 \\
5 & 5 & \\
\underline{2} & \underline{1} & \underline{2} \\
5 & 5 & 5
\end{array}\right] .}
\end{array}\right.
$$

16. $\left[\begin{array}{rrr}1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0\end{array}\right]$.

Sol. Let $A=\left[\left.\begin{array}{rrr}1 & 3 & -2 \\ -3 & 0 & -5\end{array} \right\rvert\,\right.$

$$
\left[\begin{array}{lll}
2 & 5 & 0
\end{array}\right]
$$

We know that $\mathrm{A}=\mathrm{I}_{3} \mathrm{~A}$

$$
\Rightarrow \quad\left[\begin{array}{rrr}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{A}
$$

Here a_{11} is already 1 .
Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+3 \mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-2 \mathrm{R}_{1}$ (to make $a_{21}=0$ and $a_{31}=0$)

$$
\begin{aligned}
& \left\lceil\begin{array}{lll}
1 & 3 & -2 \\
\hline
\end{array}\left\lceil\begin{array}{llll}
1 & 0 & 0
\end{array}\right]\right. \\
& \Rightarrow|-3+3 \quad 0+9 \quad-5-6|=\left\lvert\, \begin{array}{lll}
0+3 & 1+0 & 0+0
\end{array} \quad \mathrm{~A}\right. \\
& \left\lfloor\lfloor 2-2 \quad 5-6 \quad 0+4 \mid\rfloor\left[\begin{array}{lll}
0-2 & 0-0 & 1-0
\end{array}\right]\right. \\
& \Rightarrow \quad\left[\begin{array}{rrr}
1 & 3 & -2 \\
0 & 9 & -11 \\
& & \\
0 & -1 & 4
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0
\end{array}\right] \mathrm{A}
\end{aligned}
$$

Operate $\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3}$ to make a_{22} simpler entry

$$
\Rightarrow \quad\left|\begin{array}{rrr}
1 & 3 & -2 \\
0 & -1 & 4 \\
0 & 9 & -11
\end{array}\right|=\left[\left.\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 0 & 1 \\
3 & 1 & 0
\end{array} \right\rvert\, \mathrm{A}\right.
$$

Operate $\mathrm{R}_{2} \rightarrow(-1) \mathrm{R}_{2}$ to make $a_{22}=1$

$$
\Rightarrow \quad\left[\begin{array}{lll}
1 & 3 & -2\rceil \\
0 & 1 & -4 \\
0 & 9 & -11
\end{array} \left\lvert\,=\begin{array}{ccc}
{[1} & 0 & 0 \\
\left|\begin{array}{ccc}
& 0 & -1
\end{array}\right| \mathrm{A} \\
3 & 1 & 0
\end{array}\right.\right]
$$

Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-3 \mathrm{R}_{2}$ to make $a_{12}=0$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-9 \mathrm{R}_{2}$ (to make $a_{32}=0$)

$$
\begin{aligned}
& \lceil 1-0 \quad 3-3 \quad-2+12\rceil\lceil 1-6 \quad 0-0 \quad 0+3\rceil \\
& \Rightarrow \left\lvert\, \begin{array}{lllllll|l}
\mid & 1 & -4 & |=| & 2 & 0 & -1 & \mathrm{~A}
\end{array}\right. \\
& 0 \quad 9-9 \quad 14 \text {-3@U[3T18 } 1-0 \quad 0+9 \text {] }
\end{aligned}
$$

Class 12
Chapter 3 - Matrices
$\Rightarrow \quad\left[\left.\begin{array}{rrr}1 & 0 & 10 \\ 0 & 1 & -4 \\ \left.\left\lvert\, \begin{array}{lll} & & \mid \\ 0 & 0 & 25\end{array}\right.\right]\end{array}=\begin{array}{rrr}-5 & 0 & 3 \\ 2 & 0 & -1\end{array} \right\rvert\, \mathrm{A}\right.$

Operate $\mathrm{R}_{3} \rightarrow \frac{1}{25} \mathrm{R}_{3}$ to make $a_{33}=1$.

Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-10 \mathrm{R}_{3}$, (to make $a_{13}=0$) and $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+4 \mathrm{R}_{3}$ (to make $a_{23}=0$).

$$
\begin{array}{lllll}
\mid & & & & \text { l } \\
\lfloor & 25 & 25 & 25 & 1\rfloor
\end{array}
$$

$$
\left[\begin{array}{ccc}
1 & \frac{-2}{5} & \frac{-3}{5} \\
-2 & 4 & 11
\end{array}\right]
$$

$$
\Rightarrow \quad \mathrm{I}_{3}=
$$

$$
\left.\begin{array}{rl}
\left\lvert\, \frac{-3}{5}\right. & \underline{1} \\
\hline 5 & 25 \\
25
\end{array} \right\rvert\,
$$

$$
\therefore \quad \text { By Definition, } \quad A^{-1}=\left|-\frac{2}{5} \quad \frac{4}{25} \quad \frac{11}{25}\right| .
$$

17.

$\left[\begin{array}{rrr}\mathbf{2} & \mathbf{0} & -\mathbf{1} \\ \mathbf{5} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \end{array}\right]$
$-3 \quad 1 \quad \underline{9}$
$\left[\begin{array}{ccc}5 & 25 & 25\end{array}\right]$

$$
\left\lceil 2 \begin{array}{lll}
\lceil 2 & 0 & -1
\end{array}\right.
$$

Sol. Let

$$
A=\left|\begin{array}{lll}
5 & 1 & 0 \\
\lfloor 0 & 1 & 3
\end{array}\right|
$$

We know that $A=I_{3} \quad A \Rightarrow\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ \lfloor 0 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\left|\begin{array}{ll}0 & 1\end{array} 0\right| \mathrm{A}$
Let us try to make $a_{11}=1$
Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$

Class 12
$\left.\Rightarrow \quad\left[\begin{array}{llr}2 & 0 & -1 \\ 1 & 1 & 2 \\ 0 & 1 & 3\end{array}\right]\right\rfloor \left.=\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ \mid & 0 & 0\end{array} 1\right] \right\rvert\, A$
Operate $\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2}$ (to make $a_{11}=1$)
$\Rightarrow \quad\left[\left.\begin{array}{rrr}1 & 1 & 2 \\ 2 & 0 & -1 \\ \lfloor 0 & 1 & 3\end{array} \right\rvert\,\right\rfloor\left[\left.\begin{array}{rrr}-2 & 1 & 0 \\ 1 & 0 & 0\end{array} \right\rvert\, \mathrm{A}\right.$
Operate $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ to make $a_{21}=0$. Here a_{31} is already 0
$\left.\Rightarrow \quad\left[\begin{array}{rrr}1 & 1 & 2 \\ 0 & -2 & -5 \\ 0 & 1 & 3\end{array}\right]\right\rfloor\left[\left.\begin{array}{rrr}-2 & 1 & 0 \\ 5 & -2 & 0\end{array} \right\rvert\, \mathrm{A}\right.$
Operate $\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3}$ (to make $a_{22}=1$)
$\Rightarrow \quad\left[\begin{array}{rrr}1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & -2 & -5\end{array}\right]=\left[\begin{array}{rrr}-2 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & -2 & 0\end{array}\right] \mathrm{A}$
Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}$ to make $a_{12}=0$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+2 \mathrm{R}_{2}$ to make $a_{32}=0$.
$\left.\Rightarrow \quad\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 3 \\ \lfloor 0 & 0 & 1\end{array}\right]=\begin{array}{rrr}-2 & 1 & -1 \\ 0 & 0 & 1\end{array} \right\rvert\, A$
Now $a_{33}=1$
Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{3}$ (to make $a_{13}=0$) and $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-3 \mathrm{R}_{3}$ (to make $a_{23}=0$)

$$
\left.\therefore \quad \text { By definition, } A^{-1}=\begin{array}{rrrr}
3 \\
3 & -1 & 1 \\
-15 & 6 & -5
\end{array}\right]
$$

$$
\left\lfloor\begin{array}{llll}
\lfloor & 5 & -2 & 2
\end{array}\right\rfloor
$$

18. Matrices A and B will be inverse of each other only if
(A) $\mathbf{A B}=\mathbf{B A}$
(B) $\mathbf{A B}=\mathbf{B A}=\mathbf{O}$
(C) $\mathbf{A B}=\mathbf{O}, \mathbf{B A}=\mathbf{I}$
(D) $\mathbf{A B}=\mathbf{B A}=\mathbf{I}$.

Sol. Option (D) i.e., $\mathbf{A B}=\mathbf{B A}=\mathbf{I}$ is correct answer by definition of inverse of a square matrix.

$$
\begin{aligned}
& \begin{array}{lll}
1 & 0 & 0
\end{array} \quad\lceil-2+5 \quad 1-2 \quad-1+2\rceil \\
& \Rightarrow \quad\left|\begin{array}{lll}
0 & 1 & 0
\end{array}\right|\left(=\mathrm{I}_{3}\right)=\left|\begin{array}{lll}
0-15 & 0+6 & 1-6
\end{array}\right| \mathrm{A}
\end{aligned}
$$

MISCELLANEOUS EXERCISE

1. Let $\mathrm{A}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, show that $(a \mathrm{I}+b \mathrm{~b})^{n}=a^{n} \mathrm{I}+n a^{n-1} b A$ where I is the identity matrix of order 2 and $n \in N$.

Sol. Step I. When $n=1,(a \mathrm{I}+b \mathrm{~A})^{n}=a^{n} \mathrm{I}+n a^{n-1} b \mathrm{~A}$
$\Rightarrow(a \mathrm{I}+b \mathrm{~A})^{1}=a \mathrm{I}+1 a^{0} b \mathrm{~A} \Rightarrow a \mathrm{I}+b \mathrm{~A}=a \mathrm{I}+b \mathrm{~A}$ which is true.
\therefore The result is true for $n=1$.
Step II. Suppose the result is true for $n=k$.
i.e., \quad let $(a \mathrm{I}+b \mathrm{~A})^{k}=a^{k} \mathrm{I}+k a^{k-1} b \mathrm{~A}$

Step III. To prove that the result is true for $n=k+1$.
Now $(a \mathrm{I}+b \mathrm{~A})^{k+1}=(a \mathrm{I}+b \mathrm{~A}) .(a \mathrm{I}+b \mathrm{~A})^{k}$

$$
\begin{aligned}
& =(a \mathrm{I}+b \mathrm{~A})\left(a^{k} \mathrm{I}+k a^{k-1} b \mathrm{~A}\right) \quad[\operatorname{Using}(i)] \\
& =a^{k+1} \mathrm{I}^{2}+k a^{k} b \mathrm{IA}+a^{k} b \mathrm{AI}+k a^{k-1} b^{2} \mathrm{~A}^{2}
\end{aligned}
$$

[By distributive property]
$=a^{k+1} \mathrm{I}+k a^{k} b \mathrm{~A}+a^{k} b \mathrm{~A}+k a^{k-1} b^{2} \mathrm{O}$.

\Rightarrow The result is true for $n=k+1$.
Hence, by the principle of mathematical induction, the result is true for all positive integers n.

Sol. We shall prove the result by using principle of mathematical induction.
Given: $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \mid\end{array}\right]$
$\left\lceil 3^{n-1} \quad 3^{n-1} \quad 3^{n-1}\right\rceil$
Let $\mathrm{P}(n): \mathrm{A}^{n}=\left|3^{n-1} \quad 3^{n-1} 3^{n-1}\right|$

$$
\begin{equation*}
\left\lfloor 3^{n-1} \quad 3^{n-1} \quad 3^{n-1}\right\rfloor \tag{ii}
\end{equation*}
$$

Step I. Putting $n=1$ in (ii),

$$
\left.\left.\left\lfloor\begin{array}{lll}
3^{0} & 3^{0} & 3^{0}
\end{array}\right\rfloor \quad \right\rvert\, \begin{array}{lll}
\mathbf{1} & \mathbf{1} & \mathbf{1}
\end{array}\right\rfloor
$$

which is given to be rachequET
$\therefore \quad P(1)$ is true i.e., Eqn. (ti) Ascadenny $n=1$.

Step II. Let $\mathbf{P}(\boldsymbol{k})$ be true i.e., eqn. (ii) is true for $n=k$.
Putting $n=k$ in (ii), $\mathrm{A}^{k}=\left[\begin{array}{lll}3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1}\end{array}\right\rceil$
$\left\lfloor 3^{k-1} \quad 3^{k-1} \quad 3^{k-1} \dagger\right.$

Step III. Multiplying corresponding sides of eqn. (iii) by eqn. (i)

Performing row by column multiplication on right side

$$
\left[\begin{array}{lll}
3^{k-1}+3^{k-1}+3^{k-1} & 3^{k-1}+3^{k-1}+3^{k-1} & 3^{k-1}+3^{k-1}+3^{k-1} \\
3^{k-1}+3^{k-1}+3^{k-1} & 3^{k-1}+3^{k-1}+3^{k-1} & 3^{k-1}+3^{k-1}+3^{k-1}
\end{array}\right]
$$

$\Rightarrow A^{k+1}=$

$$
\left\lfloor 3^{k-1}+3^{k-1}+3^{k-1} \quad 3^{k-1}+3^{k-1}+3^{k-1} \quad 3^{k-1}+3^{k-1}+3^{k-1}\right\rfloor
$$

$\Rightarrow A^{k+1}=\left[\left.\begin{array}{lll}3^{k} & 3^{k} & 3^{k} \\ 3^{k} & 3^{k} & 3^{k}\end{array} \right\rvert\,\right.$
$\left(\because 3^{k-1}+3^{k-1}+3^{k-1}=3 \cdot 3^{k-1}(\because x+x+x=3 x)\right.$
$=3^{1} \cdot 3^{k-1}=3^{1+k-1}=3^{k}$)
\therefore Eqn. (ii) is true for $n=k+1 \quad(\because$ on putting $n=k+1$ in (ii), we get the above equation)
i.e., $\mathrm{P}(k+1)$ is true
$\therefore \mathrm{P}(n \mid 3$ 3ie., $-4 \overline{4}$. (ii) is true for all natuital 2 m by P.M.I.
3. If $\mathbf{A}=, \quad$, then prove that $A^{n}=\quad-4 n 7$ where

n is any positive integer.
Sol. We prove the result by mathematical induction.

or $\left.\quad A=\left\lvert\, \begin{array}{cc}3 & -4 \\ 1 & -\end{array}\right.\right\rceil$ which is true. \Rightarrow The result is true for $n=1$.

Step II. Suppose that equation (i) is true for $n=k$,
$k_{k}\lceil 1+2 \mathrm{k} \quad-4 \mathrm{k}\rceil$
i.e., let $\mathrm{A}=\left\lvert\, \begin{array}{ll}\mathrm{k} & 1-2 \mathrm{k}\end{array}\right.$

Step III. To prove that Acaderntue for $n=k+1$, we have
to show that
(Putting $n=k+1$ in (i))

Performing row by column multiplication,

$$
=\left\lceil\begin{array}{cc}
3+6 k-4 k & -4-8 k+4 k \\
3 k+1-2 k & -4 k-1+2 k
\end{array}\right\rceil=\left\lceil\begin{array}{cc}
3+2 k & -4-4 k \\
1+k & -1-2 k
\end{array}\right\rceil
$$

which is the same as (iii).
\Rightarrow The result is true for $n=k+1$.
Hence, by the principle of mathematical induction, the result is true for all positive integers n.
4. If A and B are symmetric matrices, prove that $A B-B A$ is a skew symmetric matrix.
Sol. A and B are symmetric matrices

$$
\begin{align*}
\Rightarrow \quad A^{\prime}=A \text { and } & B^{\prime}=B \tag{i}\\
\text { Now } \quad(A B-B A)^{\prime} & =(A B)^{\prime}-(B A)^{\prime} \\
& =B^{\prime} A^{\prime}-A^{\prime} B^{\prime} \\
& =B A-A B \\
& =-(A B-B A)
\end{align*}
$$

$\left[\because(\mathrm{P}-\mathrm{Q})^{\prime}=\mathrm{P}^{\prime}-\mathrm{Q}^{\prime}\right]$
[Reversal Law]
[Using (i)]
$\therefore(A B-B A)$ is a skew symmetric matrix.
5. Show that the matrix $B^{\prime} A B$ is symmetric or skew
symmetric according as A is symmetric or skew symmetric.
Sol. Now,

$$
\left(\mathrm{B}^{\prime} \mathrm{AB}\right)^{\prime}=\left[\mathrm{B}^{\prime}(\mathrm{AB})\right]^{\prime}
$$

$$
=(\mathrm{AB})^{\prime}\left(\mathrm{B}^{\prime}\right)^{\prime}
$$

$\left[\because(\mathrm{CD})^{\prime}=\mathrm{D}^{\prime} \mathrm{C}^{\prime}\right]$
or $\quad\left(\mathrm{B}^{\prime} \mathrm{AB}\right)^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime} \mathrm{B}$
\ldots (i) $\left[\because(C D)^{\prime}=D^{\prime} \mathrm{C}^{\prime}\right]$
Case I. A is a symmetric matrix
$\therefore \mathrm{A}^{\prime}=\mathrm{A}$
Putting $\mathrm{A}^{\prime}=\mathrm{A}$ in equation (i), $\left(\mathrm{B}^{\prime} \mathrm{AB}\right)^{\prime}=\mathrm{B}^{\prime} \mathrm{AB}$
$\therefore \mathrm{B}^{\prime} \mathrm{AB}$ is a symmetric matrix.
Case II. A is a skew symmetric matrix.
$\therefore \mathrm{A}^{\prime}=-\mathrm{A}$
Putting $\mathrm{A}^{\prime}=-\mathrm{A}$ in equation $(i),\left(\mathrm{B}^{\prime} \mathrm{AB}\right)^{\prime}=\mathrm{B}^{\prime}(-\mathrm{A}) \mathrm{B}=-\mathrm{B}^{\prime} \mathrm{AB}$
$\therefore \quad \mathrm{B}^{\prime} \mathrm{AB}$ is a skew symmetric matrix.
6. Find the values of x, y, z if the matrix

$$
A=\left[\left.\begin{array}{rrr}
0 & 2 y & z \\
x & y & -z
\end{array} \right\rvert\, \text { satisfies the equation } A^{\prime} A=I\right. \text {. }
$$

Sol. Given: $\mathrm{A}=\left[\begin{array}{rrr}\mathrm{o} & 2 y & z \\ x & y & -z \\ & \\ x & -y & z\end{array}\right]$.

$$
\begin{aligned}
& \text { Class } 12 \\
& \text { Chapter } 3 \text { - Matrices }
\end{aligned}
$$

(Here I is I_{3} because) matrices A and A^{\prime} are matrices of order 3×3)

$$
\Rightarrow\left|\begin{array}{ccc}
0+x^{2}+x^{2} & 0+x y-x y & 0-x z+x z \\
0+x y-x y & 4 y^{2}+y^{2}+y^{2} & 2 y z-y z-y z \\
0-z x+z x & 2 y z-y z-y z & z^{2}+z^{2}+z^{2}
\end{array}\right|=\left[\left.\begin{array}{ccc}
1 & 0 & 0
\end{array} \right\rvert\,\right.
$$

$\left.\Rightarrow \quad \begin{array}{ccc}\left\lceil 2 x^{2}\right. & 0 & 0 \\ 0 & 6 y^{2} & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$

$$
\left[\begin{array}{lll}
0 & 0 & 3 z^{2}
\end{array} \left\lvert\,\left[\begin{array}{lll}
& & \\
0 & 0 & 1
\end{array}\right]\right.\right.
$$

Equating corresponding entries, we have

$$
\begin{array}{rlrl}
2 x^{2}=1, & 6 y^{2}=1, & 3 z^{2}=1 \\
\Rightarrow & y^{2}=\frac{1}{1}, & z^{2}=\underline{1} \\
2 & & 6 & 3 \\
\Rightarrow & x= \pm \sqrt{\frac{1}{2}}, & y= \pm \sqrt{\frac{1}{6}}, & z= \pm \sqrt{\frac{1}{3}} \\
\therefore & x= \pm \frac{1}{\sqrt{2}}, & y= \pm \frac{1}{\sqrt{6}}, & z= \pm \frac{1}{\sqrt{3}} .
\end{array}
$$

7. For what value of $x,\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 2 \\ x\end{array}\right]=0$?

Sol. Given: $\left.\left[\begin{array}{lll}1 & 2 & 1\end{array}\right] \left\lvert\, \begin{array}{lll}1 & 2 & 0 \\ 2 & 0 & 1\end{array}\right.\right\rceil\left\lceil\left[\begin{array}{l}0 \\ 2\end{array}\right\rceil=0\right.$

$$
3 \times 3 \quad 3 \times 1
$$

Orders 1×3
Multiplying first matrix with second matrix.

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{lll}
1+4+1 & 2+0+0 & 0+2+2
\end{array}\right]\left[\begin{array}{l}
0 \\
2 \\
x
\end{array}\right]=0 \\
& \Rightarrow\left[\begin{array}{lll}
6 & 2 & 4
\end{array}\right]\left|\begin{array}{c}
0 \\
2
\end{array}\right|=0 \\
& \begin{array}{l}
x \mid \\
\downarrow
\end{array} \\
& 1 \times 3 \quad 3 \times 1 \\
& \Rightarrow[0+4+4 x]_{1 \times 1} \xlongequal{\circ} \Rightarrow \text { CUET } \\
& \text { Equating correspondins ennleaddemiy } 4 x=0 \Rightarrow 4 x=-4
\end{aligned}
$$

$\Rightarrow \quad x=\frac{-4}{4}=-1$.
8. If $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$, show that $A^{2}-5 A+7 I=0$.

Sol. Given: $\mathrm{A}=\left\lceil\begin{array}{ll}3 & 1 \\ \hline\end{array}\right.$

$$
\therefore \mathrm{A}^{2}=\mathrm{A} . \mathrm{A}=\stackrel{\left[\begin{array}{rr}
-1 & 2
\end{array}\right]}{\left.\begin{array}{r}
3 \\
\hline
\end{array}\right\rceil\left\lceil\begin{array} { r r }
{ 3 } & { 1 } \\
{ - 1 } & { 2 }
\end{array} | | \begin{array} { r r }
{ - 1 } & { 2 }
\end{array} \left|=\left|\begin{array}{rr}
9-1 & 3+2 \\
-3-2 & -1+4
\end{array}\right|=\left[\left.\begin{array}{rr}
8 & 5 \\
-5 & 3
\end{array} \right\rvert\,\right.\right.\right.}
$$

$$
\text { L.H.S. }=\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}=\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}_{2}
$$

$$
\left[\because \mathrm{A} \text { is } 2 \times 2 \text {, therefore } \mathrm{I} \text { is } \mathrm{I}_{2}\right]
$$

$$
\left.\begin{array}{ll}
\lceil & 5 \\
\hline
\end{array} \begin{array}{lll}
\lceil & 3 & 1
\end{array}\right\rceil+{ }_{7}\lceil 100\rceil
$$

$$
\left\lfloor\begin{array} { l l }
{ - 5 } & { 3 } \\
{ \hline }
\end{array} \left\lfloor\begin{array}{ll}
-1 & 2 \\
\hline
\end{array} \quad \begin{array}{ll}
0 & 1 \\
\hline
\end{array}\right.\right.
$$

$$
=\left\lceil\begin{array}{ll}
8 & 5 \\
- & \lceil 15 \\
15 \\
\hline
\end{array}+\left\lceil\begin{array}{ll}
7 & 0 \\
\hline
\end{array}=\left\lceil\begin{array}{ll}
8-15 & 5-5 \\
+ & \lceil 7 \\
0
\end{array}\right\rceil\right.\right.
$$

$$
\left\lfloor\left.\begin{array}{ll}
-5 & 3
\end{array}\right|_{-5} 10|\quad| \quad|\quad|-5+5 \quad 3-10| |\right.
$$

9. Find x, if $\left[\begin{array}{lll}x & -5 & -1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ 4 \\ 1\end{array}\right]=0$.

Sol. Given: $\left[\begin{array}{lll}x & -5 & -1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]\left[\begin{array}{c}x \\ 4 \\ 1\end{array}\right]=0$
order $1 \times 3 \quad$ order 3×3 order 3×1
Multiplying first matrix with second matrix

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
x-0-2 & 0-10-0 & 2 x-5-3
\end{array}\right]\left[\begin{array}{l}
x \\
4 \\
1
\end{array}\right]=0} \\
1
\end{array}\right]=0
$$

order $1 \times 3 \quad$ order 3×1
$\Rightarrow[(x-2) x-10(4)$
$\Rightarrow\left[x^{2}-2 x-40+2 x-8\right]=0 \Rightarrow\left[x^{2}-48\right]_{1 \times 1}=[0]_{1 \times 1}$
Equating corresponding entries, $x^{2}-48=0$
$\Rightarrow x^{2}=48 \Rightarrow x= \pm \sqrt{48}= \pm \sqrt{16 \times 3}= \pm 4 \sqrt{3}$.
10. A manufacturer produces three products x, y, z which he sells in two markets. Annual sales are indicated below:

Market
I
II
I

Products
10,000
2,000 18,000
$\mathbf{2 0 , 0 0 0} 8,000$
(a) If unit sale prices of x, y and z are `2.50,` 1.50 and 1.00, respectively, find the total revenue in each market with the help of matrix algebra.
(b) If the unit costs of the above three commodities are `2.00,` 1.00 and 50 paise respectivley. Find the gross profit.
Sol. The matrix showing the production of the three items in market I and II can be shown by a 2×3 matrix.
Let A be this matrix, then

$$
\mathrm{A}=\begin{array}{r}
x \\
\mathrm{I} \\
\mathrm{II}\left[\begin{array}{rrc}
10,000 & 2,000 & 18,000 \\
6,000 & 20,000 & 8,000
\end{array}\right]_{2 \times 3}
\end{array}
$$

(a) Let B be the column matrix representing sale price of each unit of products x, y, z.

Then

$$
B=\left[\begin{array}{c}
2.5 \\
1.5 \\
1
\end{array}\right]_{3 \times 1}
$$

We know that revenue (= sale price \times number of items sold) In matrix form,
$[\text { Revenue matrix }]_{2 \times 1}=\mathrm{A}_{2} \times 3 \times \mathrm{B}_{3 \times 1}$
$\Rightarrow\left[\begin{array}{c}\text { Revenue from Market I } \\ \text { Revenue from Market II }\end{array}\right]$

$=\left[\left.\begin{array}{cccc}10,000 & 2,000 & 18,000 \\ 6,000 & 20,000 & 8,000 & 1.5\end{array} \right\rvert\,\right.$

Equating corresponding entries, we have the revenue collected by sale of all items in Market I = `46,000 and the revenue collected by sale of all items in Market II \(={ }^{`} 53,000\).
(b) Let the cost matrix showing the cost of each unit of products x, y, z be given by the column matrix C (say)

$$
C=\left[\begin{array}{c}
2 \\
\mathbf{1} \\
0.5
\end{array}\right]_{3 \times \mathbf{1}}
$$

Thus, the total cost of three items for each market is given by: (In general form)
[Cost matrix] $=\mathrm{AC}$

| 6,000$\quad 20,000$ | 8,000 |
| :---: | :---: | :---: | :---: |$|$| 2 |
| :---: |
| L |

$$
=\left[\begin{array}{c}
20,000+2,000+9,000 \\
12,000+20,000+4,000
\end{array}\right\rfloor_{2 \times 1}=\left[\begin{array}{l}
31,000\rceil \\
36,000
\end{array}\right]
$$

\therefore The profit collected in two markets is given in matrix form as Profit matrix $=$ Revenue matrix - Cost matrix

$$
=\left[\begin{array}{l}
46,000 \\
53,000
\end{array}\right]-\left[\begin{array}{l}
31,000 \\
36,000
\end{array}\right]=\left[\begin{array}{l}
15,000 \\
17,000
\end{array}\right]
$$

Hence, the gross profit in both the markets

$$
={ }^{`} 15,000+{ }^{`} 17,000={ }^{`} 32,000 .
$$

11. Find the matrix X so that

Sol. Given: $\left.\mathrm{X} \quad\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right|=\begin{array}{ccc}-7 & -8 & -9 \\ 2 & 4 & 6\end{array} \right\rvert\,$
$\therefore n=2$ (because numbers of columns in pre-matrix of product must be equal to number of rows in post matrix)
and so L.H.S. matrix is of order $m \times 3$. Again R.H.S. matrix is of order 2×3. Therefore, $m=2$ (By definition of equal matrices)
$\therefore \quad$ Therefore, matrix X is of order $m \times n$ i.e., 2×2.
Let

$$
\mathrm{X}=\left[\begin{array}{ll}
a & b \tag{ii}\\
c & d
\end{array}\right]
$$

Putting this value of X in eqn. (i),

Equating corresponding entries, we have
$a+4 b=-7$
$c+4 d=2$
$2 a+5 b=-8$
$2 c+5 d=4$
$3 a+6 b=-9$
...(v) $\quad 3 c+6 d=6$

Let us solve eqns. (iii) and (iv) for a and b
Eqn. (iii) $\times 2$ gives
Eqn. (iv) is

Subtracting, $\quad 3 b=-6 \Rightarrow b=-\frac{6}{3}=-2$
Putting $b=-2$ in (iii), $a-8=-7 \Rightarrow a=-7+8=1$
Putting $a=1$ and $b=-2$ in eqn. (v), $3-12=-9$
$\Rightarrow-9=-9$ which is true. \therefore values of $a=1$ and $b=-2$ exist.
Now let us solve eqns. (vi) and (vii) for c and d.
Eqn. (vi) $\times 2$ gives $2 c+8 d=4$
Eqn. (vii) is

$$
\begin{aligned}
& 2 c+5 d=4 \\
& \hline-\quad-\quad \\
& 3 d=0
\end{aligned} \Rightarrow d=\frac{\mathrm{o}}{3}=0
$$

Subtracting,
Putting $d=0$ in (vi), $c=2$
Putting $c=2$ and $d=0$ in (viii), $6=6$ which is true.
\therefore values of $c=2$ and $d=0$ exist.
Putting these values of a, b, c, d in (ii), matrix $\left.\mathrm{X}=\begin{array}{ll}1 & -2\end{array}\right\rceil$
12. If A and B are square matrices of the same order such that $A B=B A$, then prove by induction that $A B^{n}=B^{n} A$. Further, prove that $(A B)^{n}=A^{n} B^{n}$ for all $n \in N$.
Sol. Given: $\mathrm{AB}=\mathrm{BA}$
Let $\mathrm{P}(n): \mathrm{AB}^{n}=\mathrm{B}^{n} \mathrm{~A}$
We have been asked to prove eqn. (ii) by P.M.I.
(Even if not asked, we would have proved it by P.M.I.)
Step I. For $\boldsymbol{n}=\mathbf{1}$. From eqn. (ii), $\mathrm{P}(1)$: becomes $\mathrm{AB}=\mathrm{BA}$
which is given to be true by eqn. (i)
$\therefore \quad \mathrm{P}(1)$ is true i.e., eqn. (ii) is true for $n=1$
Step II. Let $\mathrm{P}(k)$ be true i.e., eqn. (ii) is true for $n=k$.
$\therefore \quad$ Putting $n=k$ in (ii), we have $\mathrm{AB}^{k}=\mathrm{B}^{k} \mathrm{~A}$
Step III. Post-multiplying both sides of eqn. (iii) by B,
We have $A B^{k} B=B^{k} A B$
or $\quad \mathrm{A} . \mathrm{B}^{k+1}=\mathrm{B}^{k} \mathrm{AB}$
Putting $\mathrm{AB}=\mathrm{BA}$ from (i) in R.H.S., we have
$\mathrm{AB}^{k+1}=\mathrm{B}^{k} \mathrm{BA} \Rightarrow \mathrm{AB}^{k+1}=\mathrm{B}^{k+1} \mathrm{~A}$
\therefore Eqn. (ii) is true for $n=k+1$
(\because On putting $n=k+1$ in (ii), we get the above result)
$\therefore \mathrm{P}(k+1)$ is true.
$\therefore \mathrm{P}(n)$ i.e., eqn. (ii) is true for all $n \in \mathrm{~N}$ by P.M.I.
13. If $\mathbf{A}=\left[\left.\begin{array}{cc}\alpha & \beta\rceil \\ \gamma & -\alpha\end{array} \right\rvert\,\right.$ is such that $\mathbf{A}^{2}=\mathbf{I}$; then
(A) $1+\alpha^{2}+\beta \gamma=\mathbf{0}$
(B) $1-\alpha^{2}+\beta \gamma=\mathbf{0}$
(C) $1-\alpha^{2}-\beta \gamma=\mathbf{0}$
(D) $1+\alpha^{2}-\beta \gamma=0$.

Sol. Given: $\mathrm{A}=\left\lceil\begin{array}{cc}\alpha & \beta\rceil \text { and } \mathrm{A}^{2}=\mathrm{I}(=\mathrm{I}) \mid \because \mathrm{A} \text { is } 2 \times 2\end{array}\right.$

$$
\begin{aligned}
& \left\lfloor\begin{array}{ll}
\gamma & -\alpha
\end{array}\right] \quad 2
\end{aligned}
$$

Equating corresponding entries, we have $\alpha^{2}+\beta \gamma=1$
$\therefore 1-\alpha^{2}-\beta \gamma=0$.
Therefore, option (C) is the correct answer.
14. If the matrix A is both symmetric and skew symmetric, then
(A) A is a diagonal matrix (B) A is a zero matrix
$\begin{array}{ll}\text { (C) } A \text { is a square matrix } & \text { (D) None of these. }\end{array}$

Sol. Because A is symmetric, therefore $\mathrm{A}^{\prime}=\mathrm{A}$
Because A is skew-symmetric, therefore $\mathrm{A}^{\prime}=-\mathrm{A}$
Putting $\mathrm{A}^{\prime}=\mathrm{A}$ from (i) in (ii), $\mathrm{A}=-\mathrm{A} \Rightarrow \mathrm{A}+\mathrm{A}=0$
$\Rightarrow \quad 2 \mathrm{~A}=\mathrm{O} \Rightarrow \mathrm{A}=\frac{\mathrm{O}}{2}=0$
i.e., A is a zero matrix. $\quad \therefore$ Option (B) is correct answer.

Note: It may be noted that if A and B are square matrices of the same order, then

$$
(A+B)^{2} \neq A^{2}+B^{2}+2 A B \text { always. }
$$

But if matrices A and B commute i.e., $A B=B A$, then $(A+B)^{2}=A^{2}+B^{2}+2 A B$ and also $(A+B)^{3}=A^{3}+B^{3}+3 A B(A+B)$
15. If A is a square matrix such that $A^{2}=A$, then $(I+A)^{3}-7 A$ is equal to
(A) A
(B) I - A
(C) I
(D) 3 A .

Sol. Given: $\mathrm{A}^{2}=\mathrm{A}$
Multiplying both sides by $\mathrm{A}, \mathrm{A}^{3}=\mathrm{A}^{2}=\mathrm{A}(\mathrm{By}(i))$
The given expression $=(I+A)^{3}-7 \mathrm{~A}$

$$
\begin{equation*}
=\mathrm{I}^{3}+\mathrm{A}^{3}+3 \mathrm{IA}(\mathrm{I}+\mathrm{A})-7 \mathrm{~A} \tag{ii}
\end{equation*}
$$

[We know that $\mathrm{AI}=\mathrm{IA}$, therefore using above note we can apply $\left.(A+B)^{3}=A^{3}+B^{3}+3 A B(A+B)\right]$

$$
=\mathrm{I}^{3}+\mathrm{A}^{3}+3 \mathrm{I}^{2} \mathrm{~A}+3 \mathrm{IA}^{2}-7 \mathrm{~A}
$$

Putting $\mathrm{A}^{2}=\mathrm{A}$ from (i) and $\mathrm{A}^{3}=\mathrm{A}$ from (ii) and

$$
\begin{aligned}
\mathrm{I}^{3} & =\mathrm{I} \text { and } \mathrm{I}^{2}=\mathrm{I}\left(\text { Because } \mathrm{I}^{n}=\mathrm{I} \text { always for all } n \in \mathrm{~N}\right) \\
& =\mathrm{I}+\mathrm{A}+3 \mathrm{IA}+3 \mathrm{IA}-7 \mathrm{~A} \\
& =\mathrm{I}+\mathrm{A}+3 \mathrm{~A}+3 \mathrm{~A}-7 \mathrm{~A} \quad(: \quad \mathrm{AI}=\mathrm{A} \text { and } \mathrm{IA}=\mathrm{A}) \\
& =\mathrm{I}+7 \mathrm{~A}-7 \mathrm{~A}=\mathrm{I}
\end{aligned}
$$

Hence, option (C) is the correct answer.

