Exercise 2.1

Find the principal values of the following:

1. $\boldsymbol{\operatorname { s i n }}^{-1}$

$$
\mid(\overline{2} \mid j
$$

Sol. Let $\sin ^{-1}\binom{1)}{\mid(\overline{2})}$, then $\sin y=-\quad \frac{1}{2}$
Since the range of the principal value branch of $\sin ^{-1}$ is $\left\lceil_{-} \frac{\pi}{\pi}\right\rceil$,
therefore, $y \in\left\lceil_{-} \pi, \pi\right\rceil$ ie., y is in fourth quadrant $(-\theta)$ or in first
لlllllllllll
quadrant. Also $\sin y$ is negative, therefore, y lies in fourth quadrant and y is negative (ie., $-\theta$).
Now $\sin ^{-1}-\frac{1}{}=-\sin ^{-1} \quad 1 \quad\left(\because \sin ^{-1}(-x)=-\sin ^{-1} X\right)$

\therefore Principal value of $\sin ^{-1}\left(_{\left.-\frac{1}{6}\right)}^{\left.()_{2}\right)}\right.$ is $_{6}^{6}\left(-\frac{\pi}{6}\right)$.
2. $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)_{)}$.

Sol. Let $\cos ^{\mathbf{- 1}}\left(\frac{\sqrt{3}}{2}\right)=y$, then $\cos y=\frac{\sqrt{3}}{2}$

Since the range of the principal value branch of $\cos ^{-1}$ is $[0, \pi]$, therefore, $y \in[0, \pi]$ ie., y is in first or second quadrant. Also $\cos y$ is positive, therefore, y lies in first quadrant.
Now $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\cos ^{-1} \cos \frac{\pi}{6}=\frac{\pi}{6}$
)
\therefore Principal value of $\cos ^{-1}(\sqrt{3})$ is π.
3. $\operatorname{cosec}^{-1}$ (2).

Sol. Let $\theta=\operatorname{cosec}^{-1} 2 \quad \therefore \theta$ is in first quadrant because $x=2>0$. (\because If $x>0$, then value of each inverse function lies in first quadrant.)
$\therefore \quad \theta=\operatorname{cosec}^{-1} 2=\operatorname{cosec}^{-1} \operatorname{cosec} \frac{\pi}{6}=\frac{\pi}{6}$.
4. $\boldsymbol{\operatorname { t a n }}^{-1}(-\sqrt{3})$.

Sol. Let $\tan ^{-1}(-\sqrt{3})=y$, then $\tan y=-\sqrt{3}$

Since the range of the principal value branch of $\tan ^{-1}$ is $\left(_{-}, \underline{\pi}\right)$, therefore, $y \in\left(-\frac{\pi}{\pi}, \underline{\pi}\right.$ i.e., y is in fourth quadrant

$(-\theta)$ or y is in first quadrant. Also $\tan y$ is negative, therefore, y lies in fourth quadrant and y is negative (i.e., $-\theta$).

Now $\tan ^{-1}(-\underset{\sqrt{3}}{ })=-\tan ^{-1} \sqrt{3} \quad\left(\because \tan ^{-1}(-x)=-\tan ^{-1} x\right)$

$$
=-\tan ^{-1} \tan \frac{\pi}{3}=-\frac{\pi}{3}
$$

\therefore Principal value of $\tan ^{-1}\left(-\frac{\pi}{3}\right)$ is $\left.{ }_{(1)}^{(} \frac{\pi}{4}\right)$.
5. $\cos ^{-1}(-1)$.
$1(\overline{2})$
Sol. Let $\left.\cos ^{-1} \left\lvert\,\left(\frac{1}{2}\right)_{1}^{1}\right.\right)=y$, then $\cos y=-\begin{aligned} & 1 \\ & \frac{1}{2}\end{aligned}$
Since the range of the principal value branch of $\cos ^{-1}$ is $[0, \pi]$, therefore, $y \in[0, \pi]$ i.e., y is in first or second quadrant. Also cos y is negative, therefore, y lies in second quadrant (ie., $y=\pi-\theta$).
Now $\cos ^{-1}-\frac{1}{}=\pi-\cos ^{-1} \quad\left(\because \cos ^{-1}(-x)=\pi-\cos ^{-1} x\right)$
\therefore Principal value of $\cos ^{-1}\left(-\frac{1}{1}\right)^{3}$ is $2 \pi \quad 3 \quad \frac{\pi}{3}=\frac{2 \pi}{3}$
6. $\tan ^{-1}(-1)$.

Sol. Let $\theta=\tan ^{-1}(-1) \therefore \theta$ lies between $-\frac{\pi}{2}$ and $0(\because x=-1<0)$
[Note. For $x<0$, values of $\sin ^{-1} x, \tan ^{-1} x$ and $\operatorname{cosec}^{-1} x$ lies between $-\frac{\pi}{2}$ and 0.]
$\therefore \tan ^{-1}(-1)=-\tan ^{-1} 1=-\tan ^{-1} \tan \frac{\pi}{4}=-\frac{\pi}{4}$
7. $\sec ^{-1}\left(\frac{2}{\mid \sqrt{3}}\right)$.

Sol. Let $\sec ^{-1}\left(\frac{2}{(\sqrt{3}}\right)=y$, then $\sec y=\frac{2}{\sqrt{3}}$
Since the range of the principal value branch of $\sec ^{-1}$ is $[0, \pi]$ $-\left\{\begin{array}{c}\frac{\pi}{2} \\ 2\end{array}\right\}$, therefore, $y \in[0, \pi]-\left\{\begin{array}{c}\frac{\pi}{\pi} \\ 2\end{array}\right\}$ ie., y is in first quadrant or
second quadrant. Also sec y is positive, therefore, y lies in first quadrant.

\therefore Principal value of $\sec ^{-1} \mid(\sqrt{\sqrt{3}})$ is 6 .
8. $\cot ^{-1}(\sqrt{3})$. >0.
Sol. Let $\theta=\cot ^{-1}(\sqrt{3})$
$\therefore \quad \theta$ is in first quadrant because $x=\sqrt{3}$

$$
\therefore \quad \theta=\cot ^{-1} \sqrt{3}=\cot ^{-1} \cot \frac{\pi}{6}=\frac{\pi}{6} .
$$

9. $\cos ^{-1}\left(\frac{-1}{(\sqrt{2})}\right.$.

Sol. Let $\theta=\cos ^{-1}\left(\Gamma\left(\frac{1}{\sqrt{2}}\right)\right.$
$\therefore \quad \theta$ lies between $\frac{\pi}{2}$ and $\pi \quad\left(\because x=-\frac{1}{2}<0\right)$
(Note. For $x<0$, value of $\cos ^{-1} x, \cot ^{-1} x$ and $\sec ^{-1} x$ lies between π and π.)
2

$$
\begin{aligned}
& \therefore \cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)=\pi-\cos ^{-1} \frac{1}{\sqrt{2}} \\
& \quad=\pi-\cos ^{-1} \cos \frac{\pi}{4}=\pi-\frac{\pi}{4}=\frac{4 \pi-\pi}{4}=\frac{3 \pi}{4} .
\end{aligned}
$$

10. $\operatorname{cosec}^{-1}(-\sqrt{2})$.

Sol. Let $\operatorname{cosec}^{-1}(-\sqrt{2})=y$, then $\operatorname{cosec} y=-\sqrt{2}$
Since the range of the principal value branch of $\operatorname{cosec}^{-1}$ is $\Gamma_{-} \frac{\pi}{,}, \pi$

- $\{0\}$, therefore, $\left.y \in \Gamma_{-}, \underline{\pi}\right\rceil$ - $\{0\}$. Also $\operatorname{cosec} y$ is negative, $\left.\begin{array}{lll}l & 2 & 2\end{array}\right]$
therefore, y lies in fourth quadrant $(-\theta)$ and y is negative.
Now, $\operatorname{cosec}^{-1}(-\sqrt{2})=-\operatorname{cosec}^{-1} \sqrt{2} \quad\left(\because \operatorname{cosec}^{-1}(-x)=-\operatorname{cosec}^{-1} x\right)$

$$
=-\operatorname{cosec}^{-1} \operatorname{cosec} \frac{\pi}{4}=-\frac{\pi}{4}
$$

\therefore Principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$ is $\left(-\frac{\pi}{4}\right)$. l ${ }_{4}$)

Find the value of the following:

$=\tan ^{-1} 1+\pi-\cos ^{-1} \frac{1}{2}-\sin ^{-1} \frac{1}{2}$
$=\tan ^{-1} \tan \frac{\pi}{4}+\pi-\cos ^{-1} \cos \frac{\pi}{3}-\sin ^{-1} \sin \frac{\pi}{6}$
$=\underline{\pi}+\pi-\underline{\pi}-\underline{\pi}=\underline{3 \pi+12 \pi-4 \pi-2 \pi}$
$\begin{array}{llll}4 & 3 & 6 & 12\end{array}$

$$
=\frac{9 \pi}{12}=\frac{3 \pi}{4}
$$

12. $\cos ^{-1}\left(\frac{1}{\left(\frac{1}{2}\right)}+2 \sin ^{-1}\left(\frac{1}{2}\right)\right.$.

Sol. $\cos ^{-1}\left(\frac{1}{(2)}+2 \sin ^{-1}\left(\frac{1}{(2)}\right)=\cos ^{-1} \cos \frac{\pi}{3}+2 \sin ^{-1} \sin \frac{\pi}{6}\right.$

$$
\left.\left.\left.=\frac{\pi}{3}+2 \right\rvert\,(\underline{\pi})\right)^{\frac{\pi}{x}}\right)=\frac{\underline{\pi}}{3}+\frac{\underline{\pi}}{3}=\frac{\underline{2 \pi}}{3} .
$$

13. If $\sin ^{-1} x=y$, then
(A) $0 \leq y \leq \pi$
(B) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(C) $0<y<\pi$
(D) $-\frac{\pi}{2}<y<\frac{\pi}{2}$.

Sol. Option (B) is the correct answer.
(By definition of principal value for $y=\sin ^{-1} x,-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$)
14. $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$ is equal to
(A) π
(B) $-\pi$
(C) π
(D) $\frac{2 \pi}{}$.
3
3 3

Sol. $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$

$$
\begin{aligned}
& =\tan ^{-1} \frac{\sqrt{3}}{-\left(\pi-\sec ^{-1} 2\right)} \quad\left(\because \sec ^{-1}(-x)=\pi-\sec ^{-1} x\right) \\
& =\tan ^{-1} \tan \frac{\pi}{3}-\pi+\sec ^{-1} \sec \frac{\pi}{3} \\
& =\frac{\pi}{3}-\pi+\frac{\pi}{3}=\frac{\pi-3 \pi+\pi}{3}=-\frac{\pi}{4} \\
& 3
\end{aligned}
$$

$\therefore \quad$ Option (B) is the correct answer.

Exercise 2.2

Prove the following:

Sol. To prove: $3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^{3}\right)$
We know that $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$
Put $\sin \theta=x\left(\Rightarrow \theta=\sin ^{-1} x\right)$
$\therefore \sin 3 \theta=3 x-4 x^{3} \quad \Rightarrow \quad 3 \theta=\sin ^{-1}\left(3 x-4 x^{3}\right)$
Putting $\theta=\sin ^{-1} x, 3 \sin ^{-1} x=\sin _{\lceil 1}^{-1}\left(3 x \nmid-4 x^{3}\right)$.
2. $3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3^{x}\right), x \in$

$$
\lfloor[\mathbf{2}, \mathbf{1} \mid
$$

Sol. To prove: $3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\lceil 1 \quad\rceil$

$$
|\overline{\mathbf{2}}, \mathbf{1}|\rfloor
$$

Let $\cos ^{-1} x=\theta$, then $x=\cos \theta$
We know that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta=4 x^{3}-3 x$
$\Rightarrow 3 \theta=\cos ^{-1}\left(4 x^{3}-3 x\right) \Rightarrow 3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right)$.
3. $\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}$.

Sol. To prove: $\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}$

$48+77 \quad 125 \quad 1$

$$
=\tan ^{-1} 264-14=\tan ^{-1} 250=\tan ^{-1} \frac{-}{2}=\text { R.H.S. }
$$

4. $2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}$.

Sol. To prove: $2 \tan ^{-1} \frac{1}{-}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}$
Sol. To prove: $2 \tan ^{-1} \frac{1}{2}$

$$
\begin{aligned}
\text { L.H.S. }= & 2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7} \\
& =\tan ^{-1} \frac{2 \times^{\frac{1}{2}} \frac{2}{(1-2)^{2}}+\tan ^{-1} \frac{1}{7}}{7}\left[\because 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}\right] \\
= & \tan ^{-1} \frac{4}{3}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{\overline{3} \frac{1}{7}}{1-\frac{4}{3} \times \frac{1}{7}} \\
& {\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right] } \\
= & \tan ^{-1} \frac{28+3}{21-4}=\tan ^{-1} \frac{31}{17}=\text { R.H.S. }
\end{aligned}
$$

Write the following functions in the simplest form:
5. $\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}, x \neq 0$.

Sol. Put $\boldsymbol{x}=\boldsymbol{\operatorname { t a n }} \theta$ so that $\theta=\tan ^{-1} x$

$$
\left.\therefore \tan ^{-1}\left|\frac{\sqrt{1+x^{2}}-1}{x}\right|\right)=\tan ^{-1} \left\lvert\,\left(\left.\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta} \right\rvert\,\right)\right.
$$

6. $\tan ^{-1} \quad 1 \quad,|x|>1$.

$$
\sqrt{\sqrt{x^{2}-1}}
$$

Sol. To simplify $\tan ^{-1} \frac{\mathbf{1}}{\sqrt{x^{2}-1}}$, put $x=\sec \theta \quad$ (See Note (iii) below)

$$
\begin{aligned}
& \left(\Rightarrow \theta=\sec ^{-1} x\right) \\
& =\tan ^{-1} \frac{1}{\sqrt{\sec ^{2} \theta-1}}=\tan ^{-1}\left|\frac{1}{\left(\sqrt{\tan ^{2} \theta}\right.}\right|
\end{aligned}
$$

$$
\mid \because \sec ^{2} \theta-\tan ^{2} \theta=1 \Rightarrow \sec ^{2} \theta-1=\tan ^{2} \theta
$$

$$
=\tan ^{-1}\left(\frac{1}{(\tan \theta)}\right)=\tan ^{-1}(\cot \theta)
$$

$$
=\tan ^{-1} \tan (\underline{\pi}-\theta)=\underline{\pi}-\theta=\underline{\pi}-\sec ^{-1} x
$$

$$
\left.l_{2} \quad l\right) \quad 2 \quad 2
$$

Very useful Note: (i) For $\sqrt{a^{2}-x^{2}}$, put $x=a \sin \theta$
(ii) For $\sqrt{a^{2}+x^{2}}$, put $x=a \tan \theta$
and
(iii) For $\sqrt{x^{2}-a^{2}}$, put $x=a \sec \theta$.
7. $\tan ^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}, x<\pi$.

$$
\begin{aligned}
& \left.=\tan ^{-1}\left(\frac{\sec \theta-1}{\mid(\tan \theta}\right)\right)=\tan ^{-1}\left|\frac{\left(\frac{1}{\cos \theta-1}\right.}{\frac{\sin \theta}{\cos \theta}}\right| \\
& =\tan ^{-1}\left(\frac{(1-\cos \theta)}{\mid(\sin \theta)}=\tan ^{-1}\left|\frac{\left(\left.2 \sin ^{2} \frac{\theta}{2} \right\rvert\,\right.}{|2 \sin \underline{\theta} \cos \underline{\theta}|}\right|\right. \\
& =\tan ^{-1}(\tan \underline{\theta})=\underline{\theta}=\underline{1}_{\theta}{ }^{\prime}\binom{1}{\tan ^{-1} x} . \\
& \left.\begin{array}{lllll}
& 2
\end{array}\right) \quad 2 \quad 2 \quad 2
\end{aligned}
$$

Sol. $\tan ^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}=\tan ^{-1} \sqrt{\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{2}{2}}}$

$$
\begin{aligned}
{[\because 1-\cos 2 \theta} & \left.=2 \sin ^{2} \theta \text { and } 1+\cos 2 \theta=2 \cos ^{2} \theta\right] \\
& =\tan ^{-1} \sqrt{\tan ^{2} \frac{X}{2}}=\tan ^{-1} \tan \frac{\underline{x}}{2}=\frac{\underline{x}}{2} .
\end{aligned}
$$

8. $\tan ^{-1}\left|\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)\right|, 0<x<\pi$.

Sol. The given expression $=\tan ^{-1}\left(\left.\frac{\cos x-\sin x}{\cos x+\sin x} \right\rvert\,\right)$
Dividing the numerator and denominator by $\cos x$,

$$
\begin{aligned}
& (\ldots x) \quad\left(\tan \frac{\pi}{-\tan x}\right) \quad(\pi) \\
& \left.=\tan ^{-1}\left|\begin{array}{l}
\left.\left\lvert\, \begin{array}{c}
1 \\
\tan \\
1+\tan x
\end{array}\right.\right)
\end{array}\right|=\tan ^{-1}\left|\frac{4}{\mid}\right| \begin{array}{c}
\left\lvert\,+\tan \frac{\pi}{\tan x}\right.
\end{array}\left|=\tan ^{-1} \tan \right| \begin{array}{c}
-x \mid \\
(\overline{4})
\end{array}\right) \\
& (1+\tan x) \quad 1+\tan ^{\frac{\pi}{2}} \tan x \\
& =\frac{\pi}{4}-x .
\end{aligned}
$$

9. $\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}},|x|<a$.

Sol. To simplify $\tan ^{-1} \quad x \quad$, put $x=a \sin \theta$;

$$
\sqrt{\sqrt{a^{2}-x^{2}}}
$$

(See note (i) below solution of Q. No. 7)

$$
\begin{aligned}
& \left.=\tan ^{-1}\left|\frac{a \sin \theta}{\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right| j=\tan ^{-1}\left|\frac{a \sin \theta}{\sqrt{a^{2}\left(1-\sin ^{2} \theta\right)}}\right|\right) \\
& a \sin \theta) \quad(\underline{a \sin \theta}) \\
& =\tan ^{-1}\left|\frac{}{\left(\sqrt{a^{2} \cos ^{2} \theta}\right.}\right|=\tan ^{-1}(a \cos \theta)=\tan ^{-1}(\tan \theta)=\theta=\sin ^{-1} \bar{a} \\
& \begin{array}{l}
\left\lceil\because x=a \sin \theta \Rightarrow \sin \theta=\frac{\underline{x}}{a} \Rightarrow \theta=\sin ^{-1} \underline{\underline{x}}\right\rceil \\
\lfloor
\end{array} \Rightarrow \\
& \left(3 a^{2} x-x^{3}\right) \quad(a \quad a)
\end{aligned}
$$

10. $\tan ^{-1}\left(\left|\frac{a^{3}-3^{a x^{2}}}{)}\right|, a>0, \mid\left(^{-\sqrt{\sqrt{3}} \leq x \leq \sqrt{\sqrt{3}}}\right)\right.$.

Sol. $\tan ^{-1}\left\{\begin{array}{|c|c|c}\left\{a^{2} x-x^{3}\right. \\ a^{3}-3 a x^{2} \\ \mid\end{array}\right\}$
(Dividing the numerator and denominator by a^{3}, to make the first term in denominator as 1)

$$
=\tan ^{-1}\left|\frac{\left(3(\underline{x})-(\underline{x})^{3}\right)}{\text { PS A AET }}\right|
$$

$$
\begin{aligned}
& \operatorname{Put} \frac{x}{a} \quad \left\lvert\,\left(1-3 \left\lvert\,\left(\frac{(x)^{2}}{a}\right)^{a}\right.\right)\right. \\
& =\tan \theta \text {. } \\
& \therefore \text { The given expression }=\tan ^{-1}\left(\left.\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta} \right\rvert\,\right) \\
& =\tan ^{-1}(\tan 3 \theta)=3 \theta=3 \tan ^{-1} \stackrel{X}{x} .
\end{aligned}
$$

Find the values of each of the following:

$$
=\tan ^{-1}\left|\left(2 \times \frac{1}{2}\right)=\tan ^{-1} 1=\tan ^{-1}\right|\left(\tan \frac{\pi}{4}\right)=\frac{\pi}{4} .
$$

12. $\cot \left(\tan ^{-1} a+\cot ^{-1} a\right)$

Sol. cot $\left(\tan ^{-1} a+\cot ^{-1} a\right)$

$\underline{\pi}$	\lceil	-1	-1	$\underline{\pi}\rceil$

$$
\begin{aligned}
& =\cot 2=0 . \quad\left|\because \tan x+\cot x={ }_{2}\right| \\
& 1\left\lceil\begin{array}{lll}
-1 & 2 x & -1 \\
-1
\end{array} y^{2}\right\rceil
\end{aligned}
$$

13. $\tan \underset{L}{ }\left|\sin 1+x^{2}+\cos \underset{y^{2}}{1+y^{2}}\right|,|x|<1, y>0$ and $x y<1$.

Sol. Put $x=\tan \theta$ and $y=\tan \phi$, then the given expression

$$
\begin{aligned}
& \left(\begin{array}{ll}
\underline{1} & -1 \underline{2 x}+1 \\
-1 & 1-y^{2}
\end{array}\right) \\
& \left.\left.=\tan \left\lvert\, \begin{array}{lccc}
2^{\sin } & 1+x^{2} & 2^{\cos } & \\
1 & & -1 & 2 \tan \theta
\end{array} \quad 1 \begin{array}{c}
1+y^{2}
\end{array}\right.\right) / .1-\tan ^{2} \phi\right) \\
& =\tan \left(\left.\right|_{2} ^{\sin } 1+\tan ^{2} \theta^{+} 2^{\cos } \overline{1+\tan ^{2} \phi}\right) \\
& \left.=\tan { }^{\lceil 1} \sin ^{-1}(\sin 2 \theta)+{ }^{1} \cos ^{-1}(\cos 2 \phi)\right\rceil
\end{aligned}
$$

$$
\begin{aligned}
& \lfloor 2 \quad 2\rfloor \quad 1-\tan \theta \tan \phi \quad 1-x y
\end{aligned}
$$

14. If $\sin \left(\sin ^{-1}+\cos ^{-1} x\right)=1$, then find the value of x.

Sol. Given : $\sin { }^{\top} \sin ^{-1}+\cos$ ACademy $\overline{\bar{y}} \sin \pi$

$$
\begin{aligned}
& \begin{array}{c}
\left\lvert\,\left(\begin{array}{l}
\text { l } \\
\\
\end{array} \quad \sin ^{-1} \frac{1}{5}+\cos ^{-1} x=\frac{\pi}{2}\right.\right.
\end{array} \\
& \Rightarrow \quad \cos ^{-1} x=\frac{\pi}{-}-\sin ^{-1} \underline{1}=\cos ^{-1} \underline{1}\left(\because \sin ^{-1} t+\cos ^{-1} t=\frac{\pi}{\pi}\right) \\
& 25 \\
& 5 \quad 5^{\mid} \\
& 2 \\
& \Rightarrow \quad x=\frac{1}{5} .
\end{aligned}
$$

15. If $\tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x+2}=\frac{\pi}{4}$, then find the value of x.

Sol. Given: $\tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x+2}=\frac{\pi}{4}$
$\left.\Rightarrow \tan ^{-1} \frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1-\left(\frac{x-1}{(x-2}\right)\left(\frac{x+1}{(x+2}\right)}=\frac{\pi}{(x+y)} 4^{(\because} \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} x+y\right)$
Multiplying by L.C.M. $=(x-2)(x+2)$,
$\Rightarrow \frac{(x-1)(x+2)+(x+1)(x-2)}{(x-2)(x+2)-(x-1)(x+1)}=\tan \frac{\pi}{4}$
$\Rightarrow \quad \frac{x^{2}+2 x-x-2+x^{2}-2 x+x-2}{x^{2}-4-\left(x^{2}-1\right)}=1$
$\Rightarrow \frac{2 x^{2}-4}{x^{2}-4-x^{2}+1}=1 \Rightarrow \frac{2 x^{2}-4}{-3}=1$
$\Rightarrow \quad 2 x^{2}-4=-3 \Rightarrow 2 x^{2}=4-3=1$
$\Rightarrow \quad x^{2}=\frac{1}{2} \quad \therefore \quad x= \pm \sqrt{\frac{1}{2}}= \pm \frac{1}{\sqrt{2}}$.

Find the values of each of the expressions in Exercises 16
16. $\left.\boldsymbol{\operatorname { s i n }}^{-1}\left(\sin ^{18}\right)^{2 \pi}\right)$.

Sol. We know that $\sin ^{-1}(\sin x)=x$. Therefore, $\sin ^{-1}(\sin \underline{2 \pi})=\underline{2 \pi}$. (3) 3 But $\underset{\sim}{2 \pi} \not\left\lceil_{-}, \underline{\pi}\right\rceil$
$3 \quad \mathrm{~L} \quad 22^{1}$, which is the principal value branch of \sin. Now, $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)=\sin ^{-1} \left\lvert\,\left(\sin \frac{3 \pi-\pi}{}{ }^{2}\right)=\sin ^{-1}\left\lceil\sin \left(\pi-\frac{\pi}{2}\right)\right\rceil\right.$ $=\sin ^{-1}\left(\sin \frac{\pi}{r}\right)=\underline{\pi}$ and $\underline{\pi} \in \Gamma_{-} \frac{\pi}{,}, \underline{\pi} \quad \therefore \sin ^{-1}(\sin \underline{2 \pi})=\frac{\pi}{4}$.

17. $\boldsymbol{\operatorname { t a n }}^{-1}\left(\boldsymbol{\operatorname { t a n }}_{\left(\begin{array}{ll}3 \pi\end{array}\right) .} \quad 4\right)$

Sol. We know that $\tan ^{-1}$ (tand OUFTErefore, $\tan ^{-1}(\tan 3 \pi)=3 \pi$.
lllllll $\begin{aligned} & \text { l }\end{aligned}$
But $3 \pi \notin\left(_{-} \pi, \underline{\pi}\right)$ which is the principal value branch of $\tan -1$

$$
\begin{aligned}
& \left.=\tan _{-1} \Gamma-\tan \underline{\pi}\right\rceil \quad{ }_{-1} \quad \underline{\pi} \\
& \left\lfloor 44^{\mid}\right\rfloor=-\tan \tan 4 \\
& \begin{array}{ccc}
-\pi
\end{array} \text { and }-\frac{\pi}{4} \in\left(\begin{array}{cc}
-\pi, & \pi
\end{array}\right) \quad \therefore \tan ^{-1}(\tan 3 \pi)=-\pi .
\end{aligned}
$$

18. $\tan \left(\sin ^{-1} 3+\cot ^{-1} 3\right)$.

Sol. Let $\quad \sin ^{-1} \frac{3}{5}=x \quad$ and $\quad \cot ^{-1} \frac{3}{5}=y$
$\Rightarrow x$ and y both lie in first quadrant because $\frac{3}{5}>0$ and also $\frac{3}{2}>0$
and hence $\cos x$ must be positive.
and $\quad \sin x=\frac{3}{5} \quad$ and $\quad \cot y=\frac{3}{2}$
$\Rightarrow \quad \cos x=\sqrt{1-\sin ^{2} x}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$
$\Rightarrow \quad \tan x=\frac{\sin x}{\cos x}=\frac{3}{4}$ and $\tan y=\frac{2}{3}$
$\therefore \tan \left(\sin ^{-1} 3+\cot ^{-1} 3\right)=\tan (x+y)$

$$
=\frac{1\left(\begin{array}{c}
\overline{5} \\
\tan x+\tan y \\
1-\tan x \tan y
\end{array}\right.}{\substack{3 \\
4 \\
3 \\
3}}=\frac{\underline{2}}{\frac{17}{2}}=\frac{17}{\frac{1}{6}}
$$

19. $\cos ^{-1}\left(\cos \frac{7 \pi}{}\right)$ is equal to
(A) $\frac{7 \pi}{6}$
(B) $\frac{5 \pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{6}$.

Sol. We know that $(x=) \cos 7 \pi=\cos \left(7 \times \underline{180^{\circ}}\right)=\cos 210^{\circ}$ is 6
negative.
$\left(\because 210^{\circ}\right.$ lies in third quadrant)
\therefore Value of $\cos ^{-1}\left(\cos \frac{7 \pi}{}\right)$ must lie between π and π.
$\therefore \cos ^{-1}(\cos 7 \pi)=\cos ^{-1}\left(\left.\cos ^{(} 2 \pi-\frac{7 \pi)}{}{ }^{\prime} \right\rvert\, \because \cos (2 \pi-\theta)=\cos \theta\right.$

$$
\text { I } \begin{aligned}
\text { (}) & \mid(|(6)| y \\
& =2 \pi-\frac{7 \pi}{6}=\frac{12 \pi-7 \pi}{6}=\frac{5 \pi}{6}
\end{aligned}
$$

\therefore Option (B) is the cerfectauadkemy
20. $\sin ^{(\pi}-\sin ^{-1}\left(-\frac{1}{1}\right)$ is equal to
${ }_{(1)} \quad$! $\mathbf{2}$ リリ
(A) $\frac{1}{2}$
1
3
(C) $\begin{aligned} & \frac{1}{4} \\ & 4\end{aligned}$
(D) 1 .

Sol. $\left.\sin \left(\underline{\pi}-\sin ^{-1}(-\underline{1})\right)=\sin ^{(\underline{\pi}}+\sin ^{-1}\right) \quad \because \sin ^{-1}(-x)=-\sin ^{-1} x$
$\left.l_{3} \quad l_{2}\right)_{2} l_{1} \quad l_{3} l^{\prime}$
$=\sin \binom{\left(\frac{\pi}{2}+\sin ^{-1}\left(\sin \frac{\pi}{6}\right)\right)}{\left(l^{6}\right)}$
$=\sin (\underline{\pi}+\underline{\pi})=\sin (\underline{2 \pi+\pi)}=\sin 3 \pi$ ${ }_{\left(\begin{array}{ll}3 & 6\end{array}\right) \quad \left\lvert\,\left(\begin{array}{lll} & & \text { リ }\end{array}\right) \quad 6\right.}$

$$
=\sin \quad \pi=1
$$

$$
2
$$

\therefore Option (D) is the correct answer.
21. $\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})$ is equal to
(A) π
(B) $-\frac{\pi}{2}$
(C) 0
(D) $2 \sqrt{3}$.

Sol. $\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})$

MISCELLANEOUS EXERCISE

Find the value of the following:

1. $\cos ^{-1}\left(\cos \frac{13 \pi}{} \quad\right.$).

Sol. Here $(x)=\cos \frac{13 \pi}{}=\cos \frac{12 \pi+\pi}{6}=\cos \left(2 \pi+\frac{\pi}{2}\right)$

$$
=\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}>0
$$

\therefore Value of $\cos ^{-1}(\cos 13 \pi)$ lies in first quadrant.

6
Sol. Here $(x)=\tan \frac{7 \pi}{6}=\tan \frac{6 \pi+\pi}{6}=\tan \binom{\left(\pi+\frac{\pi}{)}\right)=\tan \frac{\pi}{(6)}=1}{6}>0$
\therefore Value of $\tan ^{-1}(\tan 7 \pi)$ lies in first quadrant.
$\therefore \tan ^{-1}(\tan 7 \pi)=\tan ^{-1} 1=\tan ^{-1} \tan \underline{\pi}=\underline{\pi}$.

3. Prove that $2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}$.

Sol. Let $\sin ^{-1} \frac{3}{5}=\theta$
$\Rightarrow \theta$ lies in first quadrant $\left.\right|_{\left(\because \frac{3}{5}>0\right)} ^{(\because)}$ and $\quad \sin \theta=\frac{3}{5}$.
$\therefore \quad \cos \theta$ is positive and $=\sqrt{1-\sin ^{2} \theta}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$
$\therefore \quad \tan \theta=\frac{\underline{\sin \theta}}{\cos \theta}=\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}$

We know that $\quad \boldsymbol{\operatorname { t a n }} 2 \theta=-2 \tan \underline{\theta}=\frac{2 \times 3}{4}$

$$
1-\tan ^{2} \theta \quad 1-\frac{9}{16}
$$

3
or $\tan 2 \theta=\underline{\underline{2}}=\underline{3} \times \underline{16}=\underline{24}$ or $2 \theta=\tan ^{-1} \underline{24}$

$$
\begin{array}{llll}
\frac{7}{16} & 2 & 7 & 7
\end{array}
$$

7
Putting $\theta=\sin ^{-1} \frac{3}{5}, 2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}$.
4. Prove that $\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{77}{36}$.

$$
{ }_{-1} 8
$$

Sol. Let $\sin -=\alpha \Rightarrow \alpha$ is in first quadrant. 8
and $\quad \sin \alpha=\overline{17}$
$\therefore \quad \cos \alpha$ is positive and $=\sqrt{1-\sin ^{2} \alpha}=\sqrt{1-\frac{64}{289}}$

$$
\begin{aligned}
& =\sqrt{\frac{289-64}{289}}=\sqrt{\frac{225}{289}}=\frac{15}{17} \\
\therefore & \tan \alpha=\frac{\sin \alpha}{\cos \alpha}=\frac{\frac{8}{17}}{\frac{15}{17}}=\frac{8}{15}
\end{aligned}
$$

Again let $\sin ^{-1} \frac{3}{5}=\beta \Rightarrow \beta$ is in first quadrant. $\left(\left\lvert\, \because \frac{3}{5}>0\right.\right)$,
and $\quad \sin \beta=\frac{3}{5}$
$\therefore \cos \beta$ is also positive and $=\sqrt{1-\sin ^{2} \beta}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$ 3

$$
\therefore \quad \tan \beta=\frac{\sin \beta}{\cos \beta}=\frac{\overline{5}}{\frac{4}{5}}=\frac{3}{4}
$$

We know that $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
Putting values of $\tan \alpha$ and $\tan \beta,=\frac{8}{15}+\frac{3}{4}$

$$
1-\frac{}{15} \cdot \frac{3}{4}
$$

Multiplying by L.C.M. $=60$,

$$
=\frac{32+45}{60-24}=\frac{77}{36}
$$

i.e.,

$$
\tan (\alpha+\beta)=\frac{77}{36}
$$

$$
\therefore \quad \alpha+\beta=\tan ^{-1} \frac{77}{36}
$$

Putting values of α and $\beta, \sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{77}{36}$.
5. Prove that $\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65}$.

$$
{ }_{-1} 4
$$

Sol. Let $\cos \overline{5}=\alpha \Rightarrow \alpha$ is in first quadrant. $\because \frac{\square}{5} \mathrm{o}$
and $\quad \cos \alpha=\frac{4}{5}$
$\therefore \quad \sin \alpha$ is also positive and $=\sqrt{1-\cos ^{2} \alpha}$

$$
=\sqrt{1-\frac{16}{25}}=\sqrt{\frac{9}{25}}=\frac{3}{5}
$$

Again let $\cos ^{-1} \frac{12}{13}=\beta$
$\Rightarrow \quad \beta$ is in first quadrant.

$$
\left(\because \frac{12}{13}>0\right)
$$

and $\cos \beta=\frac{12}{13}$.
$\therefore \quad \sin \beta$ is also positive and $=\sqrt{1-\cos ^{2} \beta}$

$$
=\left.\sqrt{1-\left\lvert\,\left(\frac{12}{13}\right)^{2}\right.}\right|^{2}=\sqrt{1-\frac{144}{169}}=\sqrt{\frac{169-144}{169}}=\sqrt{\frac{25}{169}}=\frac{5}{13}
$$

We know that $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
Putting values, $\underset{\text { Academy }}{\text { CUE }} \underset{(12)}{13}\left(\frac{12}{5}-\frac{3}{13}\right)$

$$
\begin{array}{ll}
\text { or } & \cos (\alpha+\beta)=\frac{48}{65}-\frac{15}{65}=\frac{33}{65} \\
\therefore & \alpha+\beta=\cos ^{-1} \frac{33}{65}
\end{array}
$$

Putting values of α and $\beta, \cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65}$.
6. Prove that $\cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{56}{65}$.

Sol. Let $\cos ^{-1} \frac{12}{13}=\alpha \Rightarrow \alpha$ is in first quadrant. $\left\lvert\, \begin{aligned} & \dot{12} \\ & \left.\frac{12}{13}>0 \right\rvert\, j\end{aligned}\right.$
and $\quad \cos \alpha=\overline{13}$.
$\therefore \quad \sin \alpha$ is also positive and $=\sqrt{1-\cos ^{2} \alpha}=\sqrt{1-\frac{144}{169}}$

$$
=\sqrt{\frac{169-144}{169}}=\sqrt{\frac{25}{169}}=\frac{5}{13}
$$

Let $\sin \frac{\overline{5}}{}=\beta \Rightarrow \beta$ is in first quadrant. $\left.\quad \because \frac{-}{5} \quad 0 \right\rvert\,$
and $\quad \sin \beta=\frac{3}{5}$.
$\therefore \cos \beta$ is also positive and $=\sqrt{1-\sin ^{2} \beta}=\sqrt{1-\frac{9}{25}}$

$$
=\sqrt{\frac{25-9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5}
$$

We know that $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$.
Putting values, $\sin (\alpha+\beta)=5(4)+12(3)=20+36=56$

$$
\overline{13}\left(\begin{array}{lllll}
5
\end{array}\right) \quad \overline{{ }_{13}}\left({ }_{5}\right) \quad \overline{65} \quad \overline{65} \quad \overline{65}
$$

$$
\therefore \quad \alpha+\beta=\sin ^{-1} \frac{56}{65}
$$

Putting values of α and $\beta, \cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{56}{65}$.
7. Prove that $\tan ^{-1} \frac{63}{16}=\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}$.

Sol. Let $\sin ^{-1} \frac{5}{13}=x$ and $\cos ^{-1} \frac{3}{\mathbf{5}}=y$
$\Rightarrow x$ and y both lie in first quadrant because $\frac{5}{13}>0$ and $\frac{3}{5}>0$
and hence $\cos x$ and $\sin y$ are both positive

$$
\text { and } \quad \sin x=\frac{5}{13} \text { and } \cos y=\frac{3}{5}
$$

$\left.\Rightarrow \quad \cos x=\sqrt{1-\sin ^{2} x}=\sqrt{1-\left\lvert\,\left(\frac{5}{13}\right)^{2}\right.}\right)^{2}=\sqrt{\frac{144}{169}}=\frac{12}{13}$
and $\quad \sin y=\sqrt{1-\cos ^{2} y}=\sqrt{1-\left\lvert\,\left(\frac{3}{5}\right)^{2}\right.}=\sqrt{\frac{16}{25}}=\frac{4}{5}$
$\begin{aligned} \Rightarrow \quad \tan x & =\frac{\sin x}{\cos x}=\frac{\frac{5}{13}}{\frac{12}{13}}=\frac{5}{12} \\ \text { and } \quad \tan y & =\frac{\frac{4}{5}}{\cos y}=\frac{4}{\frac{3}{5}}=\frac{4}{3}\end{aligned}$
Now, $\tan (x+y)=\underline{\tan x+\tan y}=\frac{-5}{12}+\frac{4}{3}$

$$
1-\tan x \tan y \quad 1-5 \times 4
$$

$$
123
$$

$$
=\frac{\frac{21}{12}}{\frac{4}{9}}=\frac{7}{4} \times \frac{9}{4}=\frac{63}{16}
$$

$$
\Rightarrow \quad \tan ^{-1} \frac{63}{16}=x+y
$$

Putting values of x and $y, \tan ^{-1} \frac{63}{16}=\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}$.
8. Prove that $\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$.

Sol. L.H.S. $=\left(\tan ^{-1} 1+\tan ^{-1} 1\right)+\left(\tan ^{-1}+\tan ^{-1} 1\right)$

Here for first sum, $x y=\frac{1}{5} \times \frac{1}{\square}=\frac{1}{35}<1$ and for second sum

$$
\begin{aligned}
& \begin{array}{llllll}
l & \overline{5} & \overline{7}) & \left(\begin{array}{lll}
3 & \overline{8}
\end{array}\right)
\end{array} \\
& =\tan ^{-1}\left(\frac{\frac{1}{5}+\frac{1}{7}}{\mid} \begin{array}{ll}
\underline{1} \underline{1}
\end{array} \left\lvert\,+\tan ^{-1}\left(\left.\begin{array}{l}
\frac{1}{3}+\frac{1}{8} \\
\left\lvert\, \frac{1-1}{1} .\right.
\end{array} \right\rvert\,\right.\right.\right. \\
& \left.\left(\mathbf{1}_{5}{ }_{7}\right)^{\prime}\right) \quad \left\lvert\,\left(\begin{array}{lll}
& 8 & 8
\end{array}\right)\right. \\
& {\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y} \text { if } x>0, y>0, \text { and } x y<1 .\right.}
\end{aligned}
$$

$$
\begin{aligned}
& x y=\frac{1}{3} \times \frac{1}{8}=\frac{1}{24}<1 \\
& =\tan ^{-1}\left(\frac{7+5}{35-1}\right)^{35-\tan ^{-1}}\binom{\frac{8+3}{\underline{24-1}}}{35}=\tan ^{-1} \frac{12}{34}+\tan ^{-1} \frac{11}{23} \\
& =\tan ^{-1} \frac{6}{17}+\tan ^{-1} \frac{11}{23}
\end{aligned}
$$

$$
=\tan ^{-1}\left(\begin{array}{c}
\binom{6}{\frac{6}{17}+\frac{11}{23}} \\
\left|\begin{array}{lll}
1-\underline{6} \cdot \underline{11}
\end{array}\right| \\
\left.\left\lvert\, \begin{array}{cc}
17 & 23
\end{array}\right.\right)
\end{array}\right.
$$

Multiplying NUM and DEN by 17×23
$=\tan ^{-1}\binom{\left(\frac{138+187}{}\right)}{391-66}=\tan ^{-1}\left(\frac{325}{325}\right)$
$=\tan ^{-1} 1=\tan ^{-1} \tan \frac{\pi}{4}=\frac{\pi}{4}=$ R.H.S.
9. Prove that $\left.\tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1} \right\rvert\,\left(\left.\frac{1-x)}{(1+x} \right\rvert\,\right), x \in[0,1]$.
\sqrt{x}
Sol. Let $\tan ^{-1} \sqrt{x}=\theta$, then $\quad=\tan \theta \quad \therefore x=\tan ^{2} \theta$

$$
\begin{aligned}
\therefore \text { R.H.S. }=\frac{1}{2} & \cos ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \cos ^{-1} \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} \\
& =\frac{1}{2} \cos ^{-1}(\cos 2 \theta)=\frac{1}{2}(2 \theta)=\theta=\tan ^{-1}
\end{aligned}
$$

L.H.S.
10. Prove that $\left.\cot ^{-1} \left\lvert\, \frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{x i n}}\right.\right)$

$$
=\begin{aligned}
& x \\
& \frac{2}{2} \\
& , x \in\left(0, \frac{\pi}{4}\right) \\
& \overline{4})
\end{aligned}
$$

Sol. We know that

$$
1+\sin x=\cos ^{2} \frac{x}{\frac{2}{2}}+\sin ^{2} \frac{x}{2}+2 \cos \underset{2}{=} \sin \frac{x}{2}=\left\lvert\,\left(\begin{array}{cc}
x & x)^{2} \\
\cos ^{\frac{2}{2}}+\sin -\frac{2}{2}
\end{array}\right.\right.
$$

Similarly, $\quad 1-\sin x=\left(\begin{array}{c}x \\ (\cos -2\end{array}-\sin \frac{x}{2}\right)^{2}$
$\therefore \quad \cot ^{-1}\left(\frac{\sqrt{1+\sin x}}{\sqrt{+}}=\sqrt{\text { Andix }}\right.$ And

$$
1 \begin{array}{ll}
1 & 2^{\prime}
\end{array}
$$

$$
\begin{aligned}
& \left.\begin{array}{llllll}
l & 2 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array} \quad 2\right) \\
& =\cot ^{-1}\left|\frac{2 \cos \underline{x}}{2 \sin \underline{x}}\right|=\cot ^{-1}\left(\left.\cot \frac{x}{2} \right\rvert\,\right)=\frac{\underline{x}}{2} .
\end{aligned}
$$

11. Prove that $\left.\tan ^{-1} \left\lvert\, \frac{\sqrt{1+x}-\sqrt{1-x})}{\sqrt{\sqrt{x}}}\right.\right)=4^{-1} \cos ^{-1} x$,

$$
\frac{-1}{\sqrt{2}} \leq x \leq 1
$$

Sol. L.H.S. $=\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1}+\frac{x}{-x}} \sqrt{1}\right)$
Put $x=\cos 2 \theta \quad\left(\Rightarrow 2 \theta=\cos ^{-1} x \quad \Rightarrow \quad \theta=\frac{1}{2} \cos ^{-1} x\right)$
\therefore L.H.S. $\left.=\tan ^{-1} \left\lvert\, \frac{\sqrt{1+\cos 2 \theta}-\sqrt{1-\cos 2 \theta} \theta}{\sqrt{1} \cos 2}+\sqrt{1 \quad \cos 2}\right.\right)$

$$
\begin{aligned}
& =\tan ^{-1}\left(\begin{array}{l}
\left(\frac{\left.\sqrt{2 \cos ^{2} \theta}-\sqrt{2 \sin ^{2} \theta}\right)}{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}\right) \\
\left.=\tan \quad \left\lvert\, \begin{array}{c}
\sqrt{2} \cos \theta- \\
{ }^{\sqrt{2}} \cos \theta
\end{array}\right.\right) \\
\cos \theta+\sqrt{2} \sin \theta
\end{array}\right)
\end{aligned}
$$

Dividing every term in NUM and DEN by $\sqrt{2} \cos \theta$,
$\tan \frac{\pi}{-\tan \theta}$

$$
\begin{aligned}
& \left.=\left.\tan ^{-1}\right|_{1_{1}}+\tan \theta\right)=\tan ^{-1} \\
& =\tan ^{-1} \tan (\underline{\pi}-\theta)=\underline{\pi}-\theta \\
& =\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x=\text { R.H.S. }
\end{aligned}
$$

12. Prove that $\frac{9 \pi}{-}-\frac{9}{-} \sin ^{-1} \frac{1}{-}=\frac{9}{-} \sin ^{-1} \underline{2} \sqrt{2}$.

$$
\begin{array}{lllll}
8 & 4 & 3 & 4 & 3
\end{array}
$$

Sol. L.H.S. $=9 \pi-\underline{9} \sin ^{-1} \frac{1}{-}$

$$
\begin{aligned}
& \frac{\overline{4}}{3} \\
\Rightarrow & \text { L.H.S. }= \\
\frac{9}{4} \theta & \ldots(i) \text { where } \theta=\cos ^{-1} \frac{1}{3}
\end{aligned}
$$

$\therefore \quad \theta$ is in first quadrant $\left\lvert\,\left(\because \frac{1}{3}>0\right)\right.$, and $\cos \theta=\frac{1}{3}$
$\therefore \quad \sin \theta=\sqrt{1-\cos ^{2} \theta}=\sqrt{1-\frac{1}{9}}=\sqrt{\frac{8}{9}}=\sqrt{\frac{4 \times 2}{9}}=\frac{2}{3} \sqrt{2}$
$\therefore \quad \theta=\sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$

13. Solve the equation $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$.

Sol. The given equation is

Dividing both sides by $\overline{\sin x}$, we have $\overline{\sin x}=1$

$$
\therefore \quad \cot x=1=\cot \frac{\pi}{4} .
$$

14. Solve the equation $\tan ^{-1}\left(\frac{1-x}{\left(\frac{1+x}{1+x}\right)}=\frac{1}{2} \tan ^{-1} x,(x>0)\right.$.

Sol. Put $x=\tan \theta$
\therefore The given equation becomes $\tan ^{-1}\left\{\frac{1-\tan \theta)}{(1+\tan \theta} \left\lvert\, \boldsymbol{j}=\frac{1}{2} \tan ^{-1}(\tan \theta)\right.\right.$

$$
\left\lceil\tan \frac{\pi}{-\tan \theta}\right\rceil
$$

$$
\Rightarrow \quad \tan ^{-1} \mid
$$

$\Rightarrow \quad \tan ^{-1} \tan \left(\underline{\pi}_{-\theta}\right)=\underline{\theta}$ l_{4} リ 2
$\Rightarrow \quad \frac{\pi}{4}-\theta=\frac{\underline{\theta}}{2} \Rightarrow \theta+\frac{\underline{\theta}}{2}=\frac{\pi}{4}$
$\Rightarrow \begin{gathered}3 \theta \\ 2\end{gathered}=\frac{\pi}{4} \Rightarrow 12 \theta=\frac{\pi}{2}$ ACUET $\theta=\frac{2 \pi}{12}=\frac{\pi}{6}$

$$
\begin{aligned}
& 2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x) \\
& (2 \cos x)(2)(-1 \quad-1 \quad 2 x]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{2 \cos x}{\sin ^{2} x}=\frac{2}{\sin x} \\
& 2 \cos x
\end{aligned}
$$

$$
\therefore \quad x=\tan \theta=\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}
$$

15. $\sin \left(\tan ^{-1} x\right),\| \|\left\|_{x}\right\|\| \|<1$ is equal to
(A) $\frac{x}{\sqrt{1-x^{2}}}$
(B) $\frac{1}{\sqrt{1-x^{2}}}$
(C) $\frac{1}{\sqrt{1+x^{2}}}$
(D) $\frac{x}{\sqrt{1+x^{2}}}$.

Sol. $\sin \left(\tan ^{-1} x\right)=\sin \theta$ where $\theta=\tan ^{-1} x(\Rightarrow x=\tan \theta)$

$$
\begin{aligned}
& \quad=\frac{1}{\operatorname{cosec} \theta}=\frac{1}{\sqrt{1+\cot ^{2} \theta}} \\
& {\left[\because \operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1 \Rightarrow \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta\right]}
\end{aligned}
$$

Putting $\cot \theta=\frac{1}{\tan \theta}=\frac{1}{x}$,

$$
\sin \left(\tan ^{-1} x\right)=\frac{1}{\sqrt{1+\frac{1}{x^{2}}}}=\frac{1}{\sqrt{\frac{x^{2}+1}{x^{2}}}}=\frac{x}{\sqrt{x^{2}+1}}
$$

\therefore Option (D) is the correct answer.
16. $\sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2}$, then x is equal to 1

1
1
(A) $0, \frac{-}{2}$
(B) $1, \frac{-}{2}$
(C) 0
(D) $\frac{-}{2}$.

Sol. The given equation is $\sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2}$
Put

$$
\begin{equation*}
\sin ^{-1} x=\theta \quad \therefore \quad x=\sin \theta \tag{i}
\end{equation*}
$$

$\therefore \quad$ Equation (i) becomes $\sin ^{-1}(1-x)-2 \theta=\frac{\pi}{2}$
$\Rightarrow \sin ^{-1}(1-x)=\frac{\pi}{2}+2 \theta$
$\Rightarrow \quad 1-x=\sin \left(\frac{\pi}{(2 \theta}+2 \theta\right)=\cos 2 \theta=1-2 \sin ^{2} \theta$
Putting $\sin \theta=x$ from (ii), $\quad 1-x=1-2 x^{2}$
or

$$
-x=-2 x^{2} \text { or } 2 x^{2}-x=0 \text { or } x(2 x-1)=0
$$

\therefore Either $x=0$ or $2 x-1=0$ i.e., $2 x=1$
i.e., $\quad x=\frac{1}{2}$.

Let us test these roots

Putting $x=0$ in (i), $\sin ^{-1} 1-2 \sin ^{-1} 0=\frac{\pi}{2}$ or $\quad \frac{\pi}{2}-0=\frac{\pi}{2} \quad$ or $\quad \frac{\pi}{2}=\frac{\pi}{2} \quad$ which is true.
$\therefore \quad x=0$ is a root.
Putting $x=\frac{1}{2}$ in (i), $\sin ^{-1} \frac{1}{2}-2 \sin ^{-1} \frac{1}{2}=\frac{\pi}{2}$
or $\quad-\sin ^{-1} \frac{1}{2}=\frac{\pi}{2}$
or $\quad-\quad \pi=\underline{\pi}\left\lceil\because \sin ^{-1}=\sin ^{-1} \sin ^{\pi}=\pi\right\rceil$ which is
6
2 L
2
$6 \quad 6$ 」
impossible.
$\therefore \quad x=\frac{1}{2}$ is rejected.
\therefore Option (C) is the correct answer.

17. $\tan ^{-1}\left(\frac{x}{\left(\frac{y}{y}\right)}-\tan ^{-1}\left(\frac{x-y}{x+y}\right)\right.$ is equal to
π
$\underline{\pi}$
$\underline{\pi}$
$\underline{3 \pi}$
(A) 2
(B) 3
(C) 4
(D) -4 .

Sol. $\tan ^{-1} \frac{x}{y}-\tan ^{-1}\left(\frac{x-y}{x+y}\right)$

$$
\left.=\tan ^{-1} \left\lvert\, \frac{\underline{x}}{\bar{y}}-\left(\frac{x-y}{x+y}\right)^{\prime}\right.\right] \quad\left({ }^{-1} \quad{ }^{-1} \quad{ }^{-1}(\underline{x-y}) \mid \quad(\because \tan \quad A-\tan \quad B=\tan \quad 1+A B \mid)\right.
$$

$$
\left\lfloor\quad y\left({ }^{\prime} x+y\right)^{\prime}\right\rfloor^{\prime}
$$

Multiplying both numerator and denominator by $y(x+y)$
$=\tan ^{-1}\left[\left.\frac{x(x+y)-y(x-y)}{y(x+y)+x(x-y)} \right\rvert\,\right]=\tan ^{-1}\left(\left|\frac{x^{2}+x y-x y+y^{2}}{x y+y^{2}+x^{2}-x y}\right|^{y}\right)$
$=\tan ^{-1}\left(\left|\frac{x^{2}+y^{2}}{x^{2}+y^{2}}\right|\right)=\tan ^{-1} 1=\tan ^{-1} \tan \frac{\pi}{4}=\frac{\pi}{4}$
\therefore Option (C) is the correct answer.

