Exercise 2.1

Find the principal values of the following: 1. $\sin^{-1} \begin{pmatrix} -1 \\ - \\ - \\ | \\ 2 | \end{pmatrix}$

Sol. Let $\sin^{-1} \begin{pmatrix} -1 \\ - \\ | \\ \boxed{2} \end{pmatrix} = y$, then $\sin y = - \frac{1}{2}$

Since the range of the principal value branch of \sin^{-1} is $\begin{bmatrix} \pi, \pi \end{bmatrix}$, $\begin{bmatrix} 2 & 2 \end{bmatrix}$

therefore, $y \in \left[\underline{\pi}, \underline{\pi} \right]$ *i.e., y* is in fourth quadrant (- θ) or in first

..| 2 2]

quadrant. Also sin y is negative, therefore, y lies in fourth quadrant and y is negative (*i.e.*, $-\theta$).

Now
$$\sin^{-1} = -\sin^{-1} = -\sin^{-1} = (\because \sin^{-1}(-x) = -\sin^{-1}x)$$

$$= -\sin^{-1}\sin\frac{\pi}{2} = -\frac{\pi}{3}$$

The Principal value of $\sin^{-1} \begin{pmatrix} 6 & 1 \\ - & 1 \end{pmatrix} \begin{pmatrix} 6 & -\pi \\ - & 1 \end{pmatrix}$

2. $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$.

Sol. Let
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$$
, then $\cos y = \frac{\sqrt{3}}{2}$

Since the range of the principal value branch of \cos^{-1} is $[0, \pi]$, therefore, $y \in [0, \pi]$ *i.e.*, y is in first or second quadrant. Also $\cos y$ is positive, therefore, y lies in first quadrant.

Now
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \cos^{-1}\cos\frac{\pi}{6} = \frac{\pi}{6}$$

()
 \therefore Principal value of $\cos^{-1}\left(\sqrt{3}\right)$ is $\underline{\pi}$.

3. cosec⁻¹ (2).

Call Now For Live Training 93100-87900

Academy

Sol. Let $\theta = \csc^{-1} 2$ \therefore θ is in first quadrant because x = 2 > 0. (\because If x > 0, then value of each inverse function lies in first quadrant.)

$$\therefore \quad \theta = \csc^{-1} 2 = \csc^{-1} \csc \frac{\pi}{6} = \frac{\pi}{6}$$

- 4. $\tan^{-1}(-\sqrt{3})$.
- **Sol.** Let $\tan^{-1}(-\sqrt{3}) = y$, then $\tan y = -\sqrt{3}$

Since the range of the principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, therefore, $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ *i.e.*, y is in fourth quadrant $\left|\left(2, 2\right)\right|$

 $(-\theta)$ or y is in first quadrant. Also tan y is negative, therefore, y lies in fourth quadrant and y is negative (*i.e.*, $-\theta$).

Now
$$\tan^{-1} \left(- \int_{\sqrt{3}}^{9} -\tan^{-1} (\because \tan^{-1}(-x) = -\tan^{-1}x)\right)$$

 $= -\tan^{-1} \tan \frac{\pi}{3} = -\frac{\pi}{3}$
 \therefore Principal value of $\tan^{-1} \left(- \int_{\sqrt{3}}^{3}\right)$ is $\left(-\pi\right)$.
 $\left(\frac{\pi}{2} \right)$
5. $\cos^{-1} \left(-1\right)$.
Sol. Let $\cos^{-1} \left(-1\right)$
 $\left(\frac{\pi}{2}\right)$ = y, then $\cos y = -\frac{1}{2}$
Since the range of the principal value branch of \cos^{-1} is $[0, \pi]$,
therefore, $y \in [0, \pi]$ *i.e.*, y is in first or second quadrant. Also $\cos y$ is negative, therefore, y lies in second quadrant $(i.e., y = \pi - \theta)$.
Now $\cos^{-1} \left(-\frac{1}{2}\right)$ = $\pi - \cos^{-1} \frac{1}{2}$ ($\because \cos^{-1}(-x) = \pi - \cos^{-1}x$)
 $\left| \left(\frac{2}{2} \right) \right|$ = $\pi - \cos^{-1} \frac{1}{2}$ ($\because \cos^{-1}(-x) = \pi - \cos^{-1}x$)
 $\left| \left(\frac{2}{2} \right) \right|$ = $\pi - \cos^{-1} \cos \frac{\pi}{2} = \pi - \frac{\pi}{2} = \frac{2\pi}{3}$
 \therefore Principal value of $\cos^{-1} \left(-\frac{1}{2}\right)^3$ is $\frac{2\pi}{3}$.
6. $\tan^{-1} (-1)$.
Sol. Let $\theta = \tan^{-1} (-1) \therefore \theta$ lies between $-\frac{\pi}{2}$ and 0 ($\because x = -1 < 0$)
[Note. For $x < 0$, values of $\sin^{-1} x$, $\tan^{-1} x$ and $\csc^{-1} x$ lies
between $-\frac{\pi}{2}$ and $0.$]
 $\therefore \tan^{-1} (-1) = -\tan^{-1} 1 = -\tan^{-1} \tan \frac{\pi}{4} = -\frac{\pi}{4}$
7. $\sec^{-1} \left(\frac{2}{\sqrt{3}}\right)$.
Sol. Let $\sec^{-1} \left(\frac{2}{\sqrt{3}}\right) = y$, then $\sec y = \frac{2}{\sqrt{3}}$
Since the range of the principal value branch of \sec^{-1} is $[0, \pi]$
 $-\left{\frac{\pi}{2}\right}$, therefore, $y \in [0, \pi] - \left{\frac{\pi}{2}\right}$ *i.e.*, y is in first quadrant or

second quadrant. Also sec y is positive, therefore, y lies in first quadrant.

Now,
$$\sec^{-1} | \sqrt{3} | = \sec^{-1} | \sqrt{\sec 6} | = 6$$

$$(2) \qquad \pi \\ (\frac{2}{\sqrt{3}} | = 6)$$

$$(\sqrt{3}) \qquad \pi \\ (\sqrt{3}) \qquad \pi \\ (\sqrt$$

8.
$$\cot^{-1}(\sqrt{3})$$
. > 0.
Sol. Let $\theta = \cot^{-1}(\sqrt{3})$

 $\therefore \quad \theta \text{ is in first quadrant because } x = \sqrt{3}$ $\therefore \quad \theta = \cot^{-1} \sqrt{3} = \cot^{-1} \cot \frac{\pi}{6} = \frac{\pi}{6}.$ 9. $\cos^{-1} \left(\left| \frac{-1}{\sqrt{2}} \right| \right).$ Sol. Let $\theta = \cos^{-1} \left(\left| \frac{1}{\sqrt{2}} \right| \right)$ $\therefore \quad \theta \text{ lies between } \frac{\pi}{2} \text{ and } \pi \quad (\because x = -\frac{1}{2} < 0)$

(Note. For x < 0, value of $\cos^{-1} x$, $\cot^{-1} x$ and $\sec^{-1} x$ lies between $\frac{\pi}{2}$ and π .)

$$\therefore \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \pi - \cos^{-1}\frac{1}{\sqrt{2}}$$
$$= \pi - \cos^{-1}\cos\frac{\pi}{4} = \pi - \frac{\pi}{4} = \frac{4\pi - \pi}{4} = \frac{3\pi}{4}.$$

10. \csc^{-1} (- $\sqrt{2}$). **Sol.** Let \csc^{-1} (- $\sqrt{2}$) = *y*, then $\csc y = -\sqrt{2}$

Since the range of the principal value branch of $cosec^{-1}$ is $\begin{bmatrix} \underline{\pi} & \underline{\pi} \end{bmatrix}$ **CUET** $\begin{bmatrix} 2 & 2 \end{bmatrix}$

- {0}, therefore, $y \in \begin{bmatrix} -\pi, \pi \end{bmatrix} - \{0\}$. Also cosec y is negative, $\begin{vmatrix} & & \\ & & \\ & & \\ & & \\ \end{bmatrix}$ therefore, y lies in fourth quadrant (- θ) and y is negative. Now, cosec⁻¹ (- $\sqrt{2}$) = - cosec⁻¹ $\sqrt{2}$ (\because cosec⁻¹(-x) = - cosec⁻¹x)

Find the value of the following:

$$= \frac{9\pi}{12} = \frac{3\pi}{4}$$
12. $\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$.
Sol. $\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \cos^{-1}\cos\frac{\pi}{3} + 2\sin^{-1}\sin\frac{\pi}{6}$

$$= \frac{\pi}{3} + 2\left|\frac{\pi}{6}\right|_{2} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$$
.
13. If sin⁻¹ x = y, then
(A) $0 \le y \le \pi$ (B) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.
(C) $0 < y < \pi$ (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$.
Sol. Option (B) is the correct answer.
(By definition of principal value for $y = \sin^{-1} x, -\frac{\pi}{2} \le y \le \frac{\pi}{2}$)
14. $\tan^{-1} \sqrt{3} - \sec^{-1} (-2)$ is equal to
(A) π (B) $-\frac{\pi}{2}$ (C) $\frac{\pi}{2}$ (D) $\frac{2\pi}{2}$.
Sol. $\tan^{-1} \sqrt{3} - \sec^{-1} (-2)$
 $= \tan^{-1} \sqrt{3} - \pi + \sec^{-1} \sec^{-1} \frac{\pi}{3}$
 $= \frac{\pi}{3} - \pi + \frac{\pi}{3} = \frac{\pi - 3\pi + \pi}{3} = -\frac{\pi}{3}$
 \therefore Option (B) is the correct answer.

Exercise 2.2

Prove the following: 1. $3 \sin^{-1} x = \sin^{-1} (3x - 4x^3), x \in \begin{bmatrix} -1, 1 \\ -1, -1 \end{bmatrix}$ Sol. To prove: $3 \sin^{-1} x = \sin^{-1} (3x - 4x^3)$ We know that $\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$ Put $\sin \theta = x \implies \theta = \sin^{-1} x$ $3\theta = \sin^{-1}(3x - 4x^3)$ $\therefore \sin 3\theta = 3x - 4x^3$ \Rightarrow Putting $\theta = \sin^{-1} x$, $3 \sin^{-1} x = \sin^{-1} (3x - 4x^3)$. 2. $3 \cos^{-1} x = \cos^{-1} (4x^3 - 3x), x \in [1]$. |-,1| Sol. To prove: $3 \cos^{-1} x = \cos^{-1} (4x^3 - 3x), x \in \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ $\cos^{-1} x = \theta$, then $x = \cos \theta$ Let We know that $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta = 4x^3 - 3x$ $\Rightarrow 3^{\theta} = \cos^{-1}(4x^3 - 3x) \Rightarrow 3 \cos^{-1} x = \cos^{-1}(4x^3 - 3x).$ 3. $\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24} = \tan^{-1} \frac{1}{2}$ Sol. To prove: $\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24} = \tan^{-1} \frac{1}{2}$ L.H.S. = $\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24} = \tan^{-1} \frac{11}{1-2} \frac{24}{1-2}$ $\begin{bmatrix} 11 & 24 \\ \vdots & \tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy} \end{bmatrix}$ $\frac{48+77}{264-14} = \tan^{-1} \frac{250}{250} = \tan^{-1} \frac{1}{2} = \text{R.H.S.}$ 4. $2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{2} = \tan^{-1} \frac{31}{17}$.

Sol. To prove:
$$2 \tan^{-1} \frac{1}{2}$$

L.H.S. $= 2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7}$
 $= \tan^{-1} \frac{2 \times \frac{1}{2}}{1 - \left| \left(\frac{1}{2} \right)^2 \right|^2} + \tan^{-1} \frac{1}{7} \left[\because 2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2} \right]$
 $= \tan^{-1} \frac{4}{3} + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{37}{1 - \frac{4}{3} \times \frac{1}{7}}$
 $\left[\because \tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy} \right]$
 $= \tan^{-1} \frac{28 + 3}{21 - 4} = \tan^{-1} \frac{31}{17} = R.H.S.$

Write the following functions in the simplest form:

5. $\tan^{-1} \frac{\sqrt{1+x^2}-1}{x}, x \neq 0.$

Sol. Put $x = \tan \theta$ so that $\theta = \tan^{-1} x$

$$\therefore \quad \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) = \tan^{-1}\left(\frac{\sqrt{1+\tan^2\theta}-1}{\tan\theta}\right)$$

$$= \tan^{-1} \left(\frac{\sec \theta - 1}{|\tan \theta|} \right) = \tan^{-1} \left| \left(\frac{2 \sin^2 \theta}{\sin \theta} \right) \right|$$

$$= \tan^{-1} \left(\frac{1 - \cos \theta}{|\sin \theta|} \right) = \tan^{-1} \left| \left(\frac{2 \sin^2 \theta}{2} \right) \right|$$

$$= \tan^{-1} \left(\tan^2 \theta \right) = \theta = \tan^{-1} \left| \frac{2 \sin^2 \theta}{2 \sin^2 \cos^2 \theta} \right|$$

$$= \tan^{-1} \left(\tan^2 \theta \right) = \theta = 1 \theta = 1 \tan^{-1} x.$$

$$\begin{bmatrix} || & 2| & 2 & 2 \\ 2 & 2 & 2 \\ 1 & \tan^{-1} x. \end{bmatrix}$$

$$= \tan^{-1} \frac{1}{\sqrt{x^2 - 1}}, |x| > 1.$$

$$\frac{\sqrt{x^2 - 1}}{\sqrt{x^2 - 1}}$$
Sol. To simplify $\tan^{-1} \frac{1}{\sqrt{x^2 - 1}}, \text{ put } x = \sec \theta$ (See Note (*iii*) below)

$$(\Rightarrow \theta = \sec^{-1} x)$$

$$= \tan^{-1} \frac{1}{\sqrt{\sec^2 \theta - 1}} = \tan^{-1} \left(\frac{1}{\sqrt{\tan^2 \theta}} \right)$$

$$[\because \sec^2 \theta - \tan^2 \theta = 1 \Rightarrow \sec^2 \theta - 1 = \tan^2 \theta$$

$$= \tan^{-1} \left(\frac{1}{\tan \theta} \right) = \tan^{-1} (\cot \theta)$$

$$= \tan^{-1} \tan \left(\frac{\pi}{-\theta} \right) = \frac{\pi}{-\theta} - \theta = \frac{\pi}{-\pi} - \sec^{-1} x.$$

$$||_2 = ||_2 = 2$$
Very useful Note: (i) For $\sqrt{a^2 - x^2}$, put $x = a \sin \theta$
(ii) For $\sqrt{a^2 + x^2}$, put $x = a \sec \theta.$
7. $\tan^{-1} \sqrt{\frac{1 - \cos x}{1 + \cos x}}, x < \pi.$

Sol.
$$\tan^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}} = \tan^{-1} \sqrt{\frac{2\sin^2 \frac{x}{2}}{2\cos^2 \frac{x}{2}}}$$

$$[\because 1 - \cos 2\theta = 2\sin^2 \theta \text{ and } 1 + \cos 2\theta = 2\cos^2 \theta]$$

$$= \tan^{-1} \sqrt{\tan^2 \frac{x}{2}} = \tan^{-1} \tan \frac{x}{2} = \frac{x}{2}.$$
8. $\tan^{-1} \left| \left(\frac{\cos x - \sin x}{\cos x + \sin x} \right) \right|$, $0 < x < \pi.$

Sol. The given expression =
$$\tan^{-1} \left(\frac{\cos x - \sin x}{\cos x + \sin x} \right)$$

Dividing the numerator and denominator by $\cos x$,

$$= \tan^{-1} | \mathbf{1} \tan | = \tan^{-1} \begin{vmatrix} \tan \pi - \tan x \\ - \tan x \end{vmatrix} = \tan^{-1} \tan^{-1} | \mathbf{1} \tan x - \mathbf{1} \\ \mathbf{1} + \tan x \end{vmatrix}$$

$$= \tan^{-1} \tan^{-1} | \mathbf{1} \tan x - \mathbf{1} \\ \mathbf{1} + \tan^{-1} \tan x - \mathbf{1} \\ \mathbf{1} + \tan^{-1} \tan^{-1} \mathbf{1} \\ \mathbf{1} + \mathbf{1} \\ \mathbf{1$$

9.
$$\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$$
, $|x| < a$.

4

Sol. To simplify $\tan^{-1} x$, put $x = a \sin \theta$;

$$\frac{\sqrt{a^2 - x^2}}{\sqrt{a^2 - x^2}}$$
(See note (i) below solution of Q. No. 7)

$$= \tan^{-1} \left| \begin{pmatrix} a \sin \theta \\ \sqrt{a^2 - a^2 \sin^2 \theta} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \cos \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| a \cos \theta \right|_{\theta} = \tan^{-1} (\tan \theta) = \theta = \sin^{-1} \frac{x}{a} \right|_{\theta} = \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \end{pmatrix} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt{a^2 (1 - \sin^2 \theta)} \right|_{\theta} = \tan^{-1} \left| \begin{pmatrix} a \sin^2 \theta \\ \sqrt$$

Sol. $\tan^{-1} \left\{ \frac{3a^2x - x^3}{a^3 - 3ax^2} \right\}$

(Dividing the numerator and denominator by a^3 , to make the first term in denominator as 1)

$$= \tan^{-1} \left| \frac{3\left(\frac{x}{a}\right) - \left(\frac{x}{a}\right)^{3}}{\left(\frac{a}{a}\right)^{2}} \right|$$

CUET
Academy

Put
$$\frac{x}{a}$$
 $\begin{vmatrix} x^2 \\ 1-3 \\ y \\ a \end{vmatrix}$
= tan θ .

 \therefore The given expression = tan⁻¹ $\left(\frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta} \right)$
= tan⁻¹ (tan 3θ) = 3θ = $3 \tan^{-1} \frac{x}{a}$.

Find the values of each of the following: 11. $\tan^{-1} \begin{vmatrix} 2\cos\left(2\sin^{-1}1\right) \\ 2\cos\left(2\sin^{-1}1\right) \end{vmatrix}$ Sol. $\tan^{-1} \begin{vmatrix} 2\cos\left(2\sin^{-1}1\right) \\ 2\cos\left(2\sin^{-1}1\right) \end{vmatrix} = \tan^{-1} \begin{bmatrix} 2\cos\left(2\sin^{-1}\sin\frac{\pi}{2}\right) \end{bmatrix}$ ا ال م **6** $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \tan^{-1} \begin{bmatrix} 2 \cos \left(\frac{1}{2}, \underline{\pi} \right) \end{bmatrix} = \tan^{-1} \begin{bmatrix} 2 \cos \underline{\pi} \end{bmatrix}$ $= \tan^{-1} \left| \left(2 \times \frac{1}{2} \right) \right| = \tan^{-1} 1 = \tan^{-1} \left| \left(\tan \frac{\pi}{4} \right) \right| = \frac{\pi}{4}.$ 12. $\cot(\tan^{-1}a + \cot^{-1}a)$ **Sol.** cot $(\tan^{-1} a + \cot^{-1} a)$ $\begin{bmatrix} -1 & -1 & \pi \end{bmatrix}$ $= \cot_{2} = 0.$ $|\because \tan_{x} + \cot_{x} = 2$ $|\downarrow$ $1 \quad | \quad 2x \quad -1 \quad 1 - y^{2}$ 13. $\tan_{\frac{1}{2}} |\sin_{\frac{1+x^2}{2}} + \cos_{\frac{1+y^2}{2}} |$, |x| < 1, y > 0 and xy < 1. **Sol.** Put $x = \tan \theta$ and $y = \tan \phi$, then the given expression $\begin{pmatrix} 1 & -1 & 2x \\ -1 & 2x & + \end{pmatrix} + \begin{pmatrix} 1 & -1 & 1 - y^2 \end{pmatrix}$ $= \tan \left\{ \begin{array}{c} 2 \sin & \cos & -\frac{1}{1+y^2} \\ 1 & -1 & 2\tan \theta \\ - & -\frac{1}{2} & -1 & -1 & -1 \\ \end{array} \right\}$ $= \tan \left(\frac{1}{2} \sin 1 + \tan^2 \theta + 2 \cos \frac{1}{1 + \tan^2 \theta} \right)$ $= \tan \left[\int_{-\infty}^{\infty} \sin^{-1} (\sin 2\theta) + \int_{-\infty}^{\infty} \cos^{-1} (\cos 2\phi) \right]$ $= \tan \left[\frac{1}{2} \frac{1}{2} + \frac{1}{2} (2\theta) + \frac{1}{2} (2\phi) \right] = \tan (\theta + \phi) = \frac{\tan \theta + \tan \phi}{2} = \frac{x + y}{2}.$ $1 - \tan \theta \tan \phi \qquad 1 - xy$ 14. If $\sin \left(\frac{\sin^{-1} 1}{5} + \cos^{-1} x \right) = 1$, then find the value of x. Sol. Given : $\sin \left(\frac{\sin^{-1} 1}{5} + \cos^{-1} \frac{1}{5} \right)$

$$\Rightarrow \qquad \begin{array}{c} |(5 \ y) \quad 2 \\ \Rightarrow \quad \sin^{-1}\frac{1}{5} + \cos^{-1}x = \frac{\pi}{2} \\ \Rightarrow \quad \cos^{-1}x = \frac{\pi}{2} - \sin^{-1}\frac{1}{2} = \cos^{-1}\frac{1}{2}(\because \sin^{-1}t + \cos^{-1}t = \frac{\pi}{2}) \\ \Rightarrow \quad x = \frac{\pi}{5} - \sin^{-1}\frac{1}{5} = \cos^{-1}\frac{1}{5}(\because 2) \\ \end{array}$$

15. If $\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$, then find the value of *x*.

Sol. Given: $\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$

$$\Rightarrow \tan^{-1} \frac{\frac{x-1}{x-2} + \frac{x+1}{x+2}}{1 - \left(\frac{x-1}{x-2}\right) \left(\frac{x+1}{x+2}\right)} = \frac{\pi}{4} \left(\begin{array}{c} \tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{x+2} \\ \vdots \\ 1 - xy \end{array} \right)$$

Multiplying by L.C.M. =
$$(x - 2)(x + 2)$$
,

$$\Rightarrow \frac{(x-1)(x+2) + (x+1)(x-2)}{(x-2)(x+2) - (x-1)(x+1)} = \tan \frac{\pi}{4}$$

$$\Rightarrow \frac{x^2 + 2x - x - 2 + x^2 - 2x + x - 2}{x^2 - 4 - (x^2 - 1)} = 1$$

$$\Rightarrow \frac{2x^2 - 4}{x^2 - 4 - x^2 + 1} = 1 \Rightarrow \frac{2x^2 - 4}{-3} = 1$$

$$\Rightarrow 2x^2 - 4 = -3 \Rightarrow 2x^2 = 4 - 3 = 1$$

$$\Rightarrow \frac{x^2 = \frac{1}{2}}{x^2 - 4} \therefore x = \pm \sqrt{\frac{1}{2}} = \pm \frac{1}{\sqrt{2}}.$$

to 18. 16. $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$. Find the values of each of the expressions in Exercises 16

Sol. We know that $\sin^{-1}(\sin x) = x$. Therefore, $\sin^{-1}(\sin \frac{2\pi}{2\pi}) = \frac{2\pi}{2\pi}$. 3 But $\underline{2\pi} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ -1

3 2 2 2 which is the principal value branch of sin .

Now,
$$\sin^{-1} \left(\frac{\sin 2\pi}{3} \right)^{=} \sin^{-1} \left(\frac{\sin 3\pi - \pi}{3} \right)^{=} \sin^{-1} \left| \frac{\sin \pi - \pi}{3} \right|^{=} \sin^{-1} \left| \frac{\sin \pi - \pi}{3} \right|^{=} \sin^{-1} \left| \frac{\sin \pi}{3} \right|^{=} \frac{\pi}{3}$$

$$= \sin^{-1} \left(\frac{\sin \pi}{3} \right)^{=} \frac{\pi}{3} \text{ and } \frac{\pi}{3} \in \left[-\frac{\pi}{3}, \frac{\pi}{3} \right]^{-1} \therefore \sin^{-1} \left(\frac{\sin 2\pi}{3} \right)^{=} \frac{\pi}{3}$$

$$= \frac{1}{3} \left[\frac{3\pi}{3} \right]^{-1} \frac{\pi}{3} = \frac{\pi}{3} \left[\frac{1}{3} \right]^{-1} \frac{\pi}{3} = \frac{\pi}{3} \left[\frac{\pi}{3} \right]^{-1} \frac{\pi}{3} \left[\frac{\pi}{3} \left[\frac{\pi}{3} \left[\frac{\pi}{3} \right]^{-1} \frac{\pi}{3} \left[\frac{\pi}{3} \left[\frac{\pi}{3} \left[\frac{\pi}{3} \right]^{-1} \frac{\pi}{3} \left[\frac{\pi}{3} \left[\frac{\pi}{3} \left[\frac{\pi}{3} \left[\frac{\pi}{3} \left[\frac{\pi}{3} \left[\frac{\pi}{3} \left$$

Sol. We know that $\tan^{-1}(\tan \frac{3\pi}{2\pi}) = \frac{3\pi}{4\pi}$.

But
$$3\pi \notin \left(-\pi, \pi\right)$$
 which is the principal value branch of $\tan -\pi$
 $4 \quad \left(-\pi, \pi\right)$
Now, $\tan^{-1} \left(\tan 3\pi\right) = \tan^{-1} \left(\tan 4\pi - \pi\right) = \tan^{-1} \left[\tan \left(\pi - \frac{\pi}{2}\right)\right]$
 $= \tan^{-1} \left[-\tan \frac{\pi}{2}\right] \quad -1 \quad \pi$
 $\left| \left(4 \right) \right| = -\tan \tan 4$
 $= -\pi \quad \text{and} - \pi \quad \in \left(-\pi, \pi\right) \quad \therefore \quad \tan^{-1} \left(\tan 3\pi\right) = -\pi$.
 $4 \quad 4 \quad \left(22\right)$

18. tan
$$\left(\frac{\sin^{-1} 3}{5} + \cot^{-1} 3 \right)$$
.
Sol. Let $\sin^{-1} \frac{3}{5} = x$ and $\cot^{-1} \frac{3}{5} = y$

⇒ x and y both lie in first quadrant because $\frac{3}{5} > 0$ and also $\frac{3}{2} > 0$
and hence $\cos x$ must be positive.
and $\sin x = \frac{3}{5}$ and $\cot y = \frac{3}{2}$

⇒ $\cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$

⇒ $\tan x = \frac{\sin x}{\cos x} = \frac{3}{4}$ and $\tan y = \frac{2}{3}$

∴ $\tan (\sin^{-1} 3 + \cot^{-1} 3) = \tan (x + y)$

 $\left| (-\frac{5}{5} - \frac{2}{2} \right|$

 $= \frac{\tan x + \tan y}{1 - 3} = \frac{3 + \frac{2}{3}}{4} = \frac{12}{2} = \frac{17}{4}$.

1. $-\tan x \tan y = \frac{3}{4} + \frac{2}{3} = \frac{12}{2} = \frac{17}{4}$.

19. $\cos^{-1} (\cos^{2\pi})$ is equal to

 $\left| (-\frac{6}{6} \right|$
(A) $\frac{7\pi}{6}$ (B) $\frac{5\pi}{6}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{6}$.

Sol. We know that $(x =) \cos^{-2\pi} = \cos (-7 \times 180^{\circ}) = \cos 210^{\circ}$ is

 $6 - ((-\frac{6}{4}))$

negative. (-210°) lies in third quadrant)

∴ $\cos^{-1} (\cos 2\pi) = \cos^{-1} (\cos (2\pi - 7\pi)) | \therefore \cos (2\pi - \theta) = \cos \theta$

 $\left| (-\frac{6}{4} \right|$

 $(-\frac{6}{4}) = (-1(-\frac{6}{4}))$

 $= 2\pi - \frac{7\pi}{6} = \frac{12\pi - 7\pi}{6} = \frac{5\pi}{6}$

∴ Option (B) is the CUET

$$= \sin \frac{(\pi + \pi)}{|3|} = \sin \frac{(2\pi + \pi)}{|3|} = \sin \frac{3\pi}{|3|} = \sin \frac{\pi}{|3|} = 1.$$

$$= \sin \frac{\pi}{|3|} = 1.$$

(A)
$$\pi$$
 (B) $-\frac{\pi}{2}$ (C) o (D) $2\sqrt{3}$.
Sol. $\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})$
 $\tan^{-1}\sqrt{3} - (\pi - \cot^{-1}\sqrt{3})$ $\because \cot^{-1}(-x) = \pi - \cot^{-1}x$
 $\tan^{-1}\tan \frac{\pi}{2} - (\pi - \cot^{-1}\cot \frac{\pi}{2}))$
 $3 \left(\begin{array}{c} |(-6|)| \\ -(-6|)| \\$

MISCELLANEOUS EXERCISE

Find the value of the following: 1. $\cos^{-1} \cos \frac{13\pi}{2}$. **Sol.** Here $(x) = \cos \frac{13\pi}{2\pi + \pi} = \cos \frac{12\pi + \pi}{2\pi + \pi} = \cos \left(\frac{\pi}{2\pi + \pi}\right)$ ار م^ا 6 $=\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}>0.$ \therefore Value of $\cos^{-1}\left(\cos^{13\pi}\right)$ lies in first quadrant. $\therefore \cos^{-1} \left(\cos \frac{13\pi}{2} \right)^{2} = \cos^{-1} \frac{-3}{\sqrt{2}} = \cos^{-1} \cos \frac{\pi}{2} = \frac{\pi}{2}.$ 2. $\tan^{-1} \left(\tan \frac{7\pi}{6} \right)^{6} \cdot \frac{2}{6} = 6$ Sol. Here $(x) = \tan \frac{7\pi}{2} = \tan \frac{6\pi + \pi}{2} = \tan (\pi + \pi) = \tan \pi = 1 > 0$ $\therefore \tan^{-1}\left(\tan \frac{2\pi}{2\pi}\right) = \tan^{-1} = \tan^{-1} \tan \frac{\pi}{2\pi} = \frac{\pi}{2\pi}.$ 66 3. Prove that $2 \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{24}{7}$. Sol. Let $\sin^{-1} \frac{3}{5} = \theta$

$$\therefore \cos \beta \text{ is also positive and } = \sqrt{1 - \sin^2 \beta} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$$

$$3$$

$$\therefore \quad \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{5}{4} = \frac{3}{4}$$

4

<u>4</u>

5

We know that
$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

Putting values of $\tan \alpha$ and $\tan \beta$, $= \frac{\frac{8}{158} + \frac{3}{4}}{\frac{158}{158} + \frac{3}{4}}$
Multiplying by L.C.M. = 60, $= \frac{32 \pm 45}{60 - 24} = \frac{77}{36}$
i.e., $\tan (\alpha + \beta) = \frac{77}{36}$
 $\therefore \qquad \alpha + \beta = \tan^{-1} \frac{77}{36}$
Putting values of α and β , $\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{77}{36}$.
5. Prove that $\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1} \frac{33}{65}$.
 $-1 - 4$
Sol. Let $\cos \frac{-5}{5} = \alpha \Rightarrow \alpha$ is in first quadrant. $(4 >)$
 $= \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5}$
Again let $\cos^{-1} \frac{12}{13} = \beta$
 $\Rightarrow \beta$ is in first quadrant. $(\because \frac{12}{13} > 0)$
and $\cos \beta = \frac{12}{13}$.
 $\therefore \sin \beta$ is also positive and $= \sqrt{1 - \cos^2 \beta}$
 $= \sqrt{1 - \left(\frac{12}{13}\right)^2} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{169 - 144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}$
We know that $\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$
Putting values, $(\swarrow 4 \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

Chapter 2 - Inverse Trigonometric Functions

or
$$\cos (\alpha + \beta) = \frac{48}{65} - \frac{15}{65} = \frac{33}{65}$$

 $\therefore \qquad \alpha + \beta = \cos^{-1} \frac{33}{65}$

Putting values of
$$\alpha$$
 and β , $\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1} \frac{33}{65}$.
6. Prove that $\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{56}{65}$.
Sol. Let $\cos^{-1} \frac{12}{13} = \alpha \Rightarrow \alpha$ is in first quadrant. $\begin{vmatrix} \sqrt{1} & \frac{12}{13} > 0 \end{vmatrix}$
and $\cos \alpha = \frac{1}{13}$.
 \therefore sin α is also positive and $= \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \frac{144}{169}}$
 $= \sqrt{\frac{169 - 144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}$
Let $\sin \frac{1}{5} = \beta \Rightarrow \beta$ is in first quadrant. $\begin{pmatrix} 3 \\ \ddots \\ 5 \end{pmatrix}$ o
and $\sin \beta = \frac{3}{5}$.
 \therefore $\cos \beta$ is also positive and $= \sqrt{1 - \sin^2 \beta} = \sqrt{1 - \frac{9}{25}}$
 $= \sqrt{\frac{25 - 9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$.
We know that $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$.
Putting values, $\sin (\alpha + \beta) = \frac{5}{(4)} + \frac{12}{(3)} = 20 + 36} = 56$
 $\frac{13}{(5)} + \frac{13}{(5)} + \frac{5}{65} + \frac{56}{65} = \frac{56}{65}$.
Putting values of α and β , $\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{56}{65}$.
7. Prove that $\tan^{-1} \frac{63}{16} = \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$.

 \Rightarrow x and y both lie in first quadrant because $\frac{5}{13}$ > 0 and $\frac{3}{5}$ > 0

and hence $\cos x$ and $\sin y$ are both positive

and
$$\sin x = \frac{5}{13}$$
 and $\cos y = \frac{3}{5}$
 $\Rightarrow \quad \cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - \left|\left(\frac{5}{13}\right)^2\right|} = \sqrt{\frac{144}{169}} = \frac{12}{13}$
and $\sin y = \sqrt{1 - \cos^2 y} = \sqrt{1 - \left|\left(\frac{3}{5}\right)^2\right|} = \sqrt{\frac{16}{25}} = \frac{4}{5}$

 $\Rightarrow \quad \tan x = \frac{\sin x}{\cos x} = \frac{\frac{5}{13}}{\frac{12}{12}} = \frac{5}{12}$ $\tan y = \frac{\sin y}{\cos y} = \frac{\frac{\pi}{5}}{\frac{3}{3}} = \frac{4}{3}$ and Now, $\tan (x + y) = \frac{\tan x + \tan y}{12 3}$ $1 - \tan x \tan y$ $1 - 5 \times 4$ 12 3 $= \frac{\frac{21}{12}}{\frac{4}{2}} = \frac{7}{4} \times \frac{9}{4} = \frac{63}{16}$ $\Rightarrow \tan^{-1} \frac{63}{16} = x + y$ Putting values of x and y, $\tan^{-1} \frac{63}{16} = \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$. 8. Prove that $\tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{2} = \frac{\pi}{4}$. Sol. L.H.S. = $(\tan^{-1} + \tan^{-1} + \tan^{ \left| \left(\frac{1}{5} - \frac{1}{7} \right) \right| \left(\frac{1}{3} - \frac{1}{8} \right) \right|$ $= \tan^{-1} \left(\underbrace{\frac{1}{5} + \frac{1}{7}}_{| 1 - 1 |} \right) + \tan^{-1} \left(\underbrace{\frac{1}{3} + \frac{1}{8}}_{1 - \frac{1}{2} \cdot \frac{1}{2}} \right)$ $\int \therefore \tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy} \text{ if } x > 0, y > 0, \text{ and } xy < 1.$ Here for first sum, $xy = \int_{-\infty}^{1} x \frac{1}{25} = \frac{1}{35} < 1$ and for second sum

$$xy = \frac{1}{3} \times \frac{1}{8} = \frac{1}{24} < 1.$$

$$= \tan^{-1} \left(\frac{7+5}{35=1} \right) + \tan^{-1} \left(\frac{8+3}{24=1} \right) = \tan^{-1} \frac{12}{34} + \tan^{-1} \frac{11}{23}$$

$$\left(\frac{35}{35} \right) \left(\frac{24}{24} \right)$$

$$= \tan^{-1} \frac{6}{17} + \tan^{-1} \frac{11}{23}$$

10. Prove that
$$\cot^{-1} \left(\frac{\sqrt{1 + \sin x}}{\sqrt{1 + \sin x}} + \sqrt{1 - \sin x} \right)$$
$$= \frac{x}{2}, x \in \left(\begin{array}{c} 0, \\ 0, \\ 1 \end{array} \right).$$

Sol. We know that

 $x + \sin x = \cos^{2} = \frac{1}{2} + \sin^{2} = \frac{1}{2} + 2\cos = \frac{1}{2} \sin = \frac{1}{2} = |\cos^{2} + \sin^{2} + \sin^$

Similarly, $1 - \sin x = \left(\begin{vmatrix} x & x \\ \cos z & -\sin z \end{vmatrix} \right)$

 $\therefore \quad \cot^{-1}\left(\frac{\sqrt{1+\sin x}}{x}\right) \xrightarrow{\text{CDET}} Academy$

Class 12

11. Prove that
$$\tan^{-1} \left(\sqrt[4]{\frac{1}{2} \frac{x}{x}} \frac{x}{\sqrt{1-x}} \right)^{-1} = \frac{x}{4} - 1 \cos^{-1} x,$$

 $\left(\begin{array}{c} \end{array}\right)^{-1} = \frac{x}{2}$
 $\left(\begin{array}{c} \frac{-1}{\sqrt{2}} \le x \le 1. \end{array}\right)^{-1}$
Sol. L.H.S. $= \tan^{-1} \left(\sqrt[4]{\frac{1+x}{x}} - \sqrt{1-x} \right)^{-1} \left(\frac{\sqrt{1-x}}{\sqrt{1-x}} \right)^{-1} \right)^{-1}$
Put $x = \cos 2\theta$ ($\Rightarrow 2\theta = \cos^{-1} x \Rightarrow \theta = \frac{1}{2} \cos^{-1} x$)
 \therefore L.H.S. $= \tan^{-1} \left(\sqrt[4]{\frac{1+\cos 2\theta}{\theta} - \sqrt{1-\cos 2\theta}} \right)^{-1} \left(\cos 2\theta - \sqrt{2\sin^2 \theta} \right)^{-1} \left(\sqrt{2} \cos^2 \theta - \sqrt{2} \sin^2 \theta \right)^{-1} \left(\sqrt{2} \cos^2 \theta - \sqrt{2} \sin^2 \theta \right)^{-1} \left(\sqrt{2} \cos^2 \theta + \sqrt{2} \sin^2 \theta \right)^{-1} \left(\sqrt{2} \cos^2 \theta + \sqrt{2} \sin^2 \theta \right)^{-1} \left(\sqrt{2} \cos^2 \theta + \sqrt{2} \sin^2 \theta \right)^{-1} \left(\sqrt{2} \cos^2 \theta + \sqrt{2} \sin^2 \theta \right)^{-1} \left(1 + \tan \theta \right)^{-1} \left(\tan^{-1} - \tan \theta \right)^{-1} \left(1 + \tan \theta \right)^{-1} \left(1 + \tan^{-1} \theta$

$$\overline{4} \quad \overline{3} \quad | (\overline{2} \quad 2 \quad 2)$$

$$\Rightarrow \text{ L.H.S.} = \frac{9}{4} \theta \quad ...(i) \text{ where } \theta = \cos^{-1} \frac{1}{3}$$

$$\therefore \quad \theta \text{ is in first quadrant } \left[(\because \frac{1}{3} > 0) \right] \text{ and } \cos \theta = \frac{1}{3}$$

$$\therefore \quad \sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \sqrt{\frac{4 \times 2}{9}} = \frac{2}{3} \sqrt{2}$$

$$\therefore \qquad \theta = \sin^{-1} \left(\frac{2\sqrt{2}}{3}\right)$$

 \Rightarrow

Putting this value of θ in (i), L.H.S. = $\frac{9}{4} \sin \left(\frac{2}{\sqrt{3}}\right)$ = R.H.S.

13. Solve the equation 2 $\tan^{-1}(\cos x) = \tan^{-1}(2 \operatorname{cosec} x)$. Sol. The given equation is

$$2 \tan^{-1} (\cos x) = \tan^{-1} (2 \operatorname{cosec} x)$$

$$(2 \cos x) (2) | -1 - 2x |$$

$$\Rightarrow \tan^{-1} | | = \tan^{-1} | | | 2 \tan x = \tan | -2 |$$

$$(1 - \cos^2 x) (\sin x) | = \tan^{-1} | | 1 + 2 \tan x = \tan | -2 |$$

$$\frac{2\cos x}{\sin^2 x} = \frac{2}{\sin x}$$

$$2 \qquad \cos x$$

Dividing both sides by $\frac{1}{\sin x}$, we have $\frac{1}{\sin x} = 1$

$$\therefore \qquad \cot x = 1 = \cot \frac{2}{4}$$

$$\therefore \qquad x = \frac{\pi}{2}.$$
14. Solve the equation $\tan^{-1} \left(\frac{1-x}{1+x}\right)^{-1} = \frac{1}{2} \tan^{-1} x, (x > 0).$

Sol. Put $x = \tan \theta$

 $\therefore \text{ The given equation becomes } \tan^{-1} \left(\frac{1 - \tan \theta}{1 + \tan \theta} \right) = \frac{1}{2} \tan^{-1} (\tan \theta)$ $\left[\tan \frac{\pi}{2} - \tan \theta \right]$

π

$$\Rightarrow \qquad \tan^{-1} \left| \underbrace{4}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\left| \underbrace{1 + \tan \pi \tan \theta}_{-\frac{1}{2}} \right| = \frac{1}{\theta}$$

$$\therefore$$
 $x = \tan \theta = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$

15. $\sin(\tan^{-1} x)$, ||||| x ||||| < 1 is equal to

(A)
$$\frac{x}{\sqrt{1-x^2}}$$
 (B) $\frac{1}{\sqrt{1-x^2}}$ (C) $\frac{1}{\sqrt{1+x^2}}$ (D) $\frac{x}{\sqrt{1+x^2}}$

Sol. sin $(\tan^{-1} x) = \sin \theta$ where $\theta = \tan^{-1} x \implies x = \tan \theta$

$$= \frac{1}{\csc \theta} = \frac{1}{\sqrt{1 + \cot^2 \theta}}$$

[:: $\csc^2 \theta - \cot^2 \theta = 1 \implies \csc^2 \theta = 1 + \cot^2 \theta$]

Putting
$$\cot \theta = \frac{1}{\tan \theta} = \frac{1}{x}$$
,

$$\sin (\tan^{-1} x) = \frac{1}{\sqrt{1 + \frac{1}{x^2}}} = \frac{1}{\sqrt{\frac{x^2 + 1}{x^2}}} = \frac{x}{\sqrt{x^2 + 1}}$$

 \therefore Option (D) is the correct answer.

16.
$$\sin^{-1}(1-x) - 2 \sin^{-1} x = \frac{\pi}{2}$$
, then x is equal to
1 1 1 1
(A) 0, $\frac{\pi}{2}$ (B) 1, $\frac{\pi}{2}$ (C) 0 (D) $\frac{\pi}{2}$.

Sol. The given equation is $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$...(i) Put $\sin^{-1}x = \theta$ \therefore $x = \sin \theta$...(ii)

 $\therefore \text{ Equation } (i) \text{ becomes } \sin^{-1}(1-x) - 2\theta = \frac{\pi}{2}$

$$\Rightarrow \sin^{-1}(1-x) = \frac{\pi}{2} + 2\theta$$

$$\Rightarrow 1-x = \sin\left(\frac{\pi}{2} + 2\theta\right) = \cos 2\theta = 1 - 2\sin^2 \theta$$

Putting $\sin \theta = x$ from (*ii*), $1 - x = 1 - 2x^2$ or $-x = -2x^2$ or $2x^2 - x = 0$ or x(2x - 1) = 0 \therefore Either x = 0 or 2x - 1 = 0 *i.e.*, 2x = 1

i.e., $x = \frac{1}{2}$.

Let us test these roots

Putting x = 0 in (i), $\sin^{-1} 1 - 2 \sin^{-1} 0 = \frac{\pi}{2}$

or
$$\frac{\pi}{2} - 0 = \frac{\pi}{2}$$
 or $\frac{\pi}{2} = \frac{\pi}{2}$ which is true.

 $\therefore x = 0$ is a root.

Putting
$$x = \frac{1}{2}$$
 in (i), $\sin^{-1} \frac{1}{2} - 2 \sin^{-1} \frac{1}{2} = \frac{\pi}{2}$

or $-\sin^{-1}\frac{1}{2} = \frac{\pi}{2}$

 $[\because t-2t=-t]$

Call Now For Live Training 93100-87900

Academy

or
$$-\frac{\pi}{2} = \frac{\pi}{2} \begin{bmatrix} \cdots & \sin^{-1} &$$

 $\therefore x = \frac{1}{2}$ is rejected.

 \therefore Option (C) is the correct answer.

